“What is mathematics? It is only a systematic effort of solving puzzles posed by nature.”
Shakuntala Devi
Recently I’ve been learning about Grothendieck-Witt rings because I want to know about \(\mathbb A^1\)-enumerative geometry. The Grothendieck-Witt ring of a field (of characteristic different from \(2\)) is formed using quadratic forms over it. Let \(k\) be a field of characteristic not \(2\). A quadratic form is a degree \(2\) homogeneous polynomial over \(k\), say \(f=\sum_{1\le i,j\le n}a_{i,j}x_{i}x_{j}\). Of course \(x_{i}x_{j}=x_{j}x_{i}\), so we can rewrite \(f=\sum_{1\le i,j\le n}a^\prime_{i,j}x_{i}x_{j}\) where \(a^\prime_{i,j}=\frac{1}{2}(a_{i,j}+a_{j,i})\), we can then associate to it a symmetric matrix \(M_f=(a^\prime_{i,j})_{1\le i,j\le n}\). We see that \(f=\mathbf{x}^{\mathrm T}M_f\mathbf{x}\) where \(\mathbf{x}=(x_i)_{1\le i\le n}\). Two \(n\)-ary quadratic forms \(f,g\) are said to be equivalent if there is \(A\in \mathrm{GL}_n(k)\) such that \(f(\mathbf{x})=g(A\mathbf{x})\). Equivalently their associated symmetric matrix are equivalent iff \(M_f=A^{\mathrm T}M_g A\) for some \(A\in \mathrm{GL}_n(k)\), i.e. congruence of matrices.