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Introduction



Introduction

Rule 1. Don’t be intimidated by categories (or the fancy diagrams or buzzwords).
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Introduction

Figure: Voevodsky’s 2-theory
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Introduction

Category theory originated from Eilenberg and Mac Lane’s study of algebraic topology.

Figure: General Theory of Natural Equivalences
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Introduction

Mathematical objects frequently come with morphisms between them.

Objects Morphisms
sets functions

groups group homomorphisms
rings ring homomorphisms

𝑘-vector spaces 𝑘-linear transformations
topological spaces continuous map

posets monotone functions

What do they have in common?
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Introduction

Definition. A category 𝒞 consists of the following data

⊚ a class of objects 𝒞 ,

⊚ a class of morphisms Hom(𝑋 , 𝑌 ) for each pair of objects 𝑋, 𝑌 ∈ 𝒞 ,

⊚ a composition operation

∘ ∶ Hom(𝑌 , 𝑍) × Hom(𝑋 , 𝑌 ) ⟶ Hom(𝑋 , 𝑍)

for each triple of objects 𝑋, 𝑌 , 𝑍 ∈ 𝒞 ,

We denote 𝑓 ∶ 𝑋 → 𝑌 for 𝑓 ∈ Hom(𝑋 , 𝑌 ) and 𝑓 ∘ 𝑔 for composition.
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Introduction

satisfying the following conditions

⊚ (associativity) if 𝑓 ∈ Hom(𝐴, 𝐵), 𝑔 ∈ Hom(𝐵, 𝐶), ℎ ∈ Hom(𝐶, 𝐷), then

(ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓 )

⊚ (identity) there exists id𝑋 ∈ Hom(𝑋 , 𝑋) for each 𝑋 ∈ 𝒞 such that

𝑓 ∘ id𝐴 = 𝑓 = id𝐵 ∘ 𝑓

for any 𝑓 ∈ Hom(𝐴, 𝐵).
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Introduction

Right away we have a lot of examples of “big” categories

Category Objects Morphisms
Set sets functions
Grp groups group homomorphisms
Rings rings ring homomorphisms
𝑘-Vect 𝑘-vector spaces 𝑘-linear transformations
Top topological spaces continuous map
Pos posets monotone functions

However, categories do not have to be big, e.g. ℕ is a category.
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Introduction

Notation. For a morphism 𝑓 ∶ 𝑋 → 𝑌 , we will typically denote it as

𝑋 𝑌𝑓

This allows us to draw diagrams consisting of multiple morphisms.

𝑋 𝑌

𝑍

𝑓

𝑔
ℎ
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Introduction

Terminology. We say that a diagram such as

𝑋 𝑌

𝑅 𝑆

𝑎

𝑓 𝑔

𝑏

commutes if for each pair of vertices 𝐴, 𝐵 in the diagram, the maps produced following
different paths from 𝐴 to 𝐵 are the same map (in this case, this means 𝑎 ∘ 𝑔 = 𝑏 ∘ 𝑓 ).
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The Yoga of Category Theory

Rule 2. Instead of construction, characterize things by their interactions with other things.
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The Yoga of Category Theory

Instead of “injective map”, think “left-cancellative map”, i.e. a map 𝑓 ∶ 𝑋 → 𝑌 s.t.,

𝑓 ∘ 𝑔 = 𝑓 ∘ ℎ ⟹ 𝑔 = ℎ

for all 𝑔, ℎ ∶ 𝑍 → 𝑋 . This is called a monomorphism.

Injectivity does not make sense in all categories, but in the ones that do, an injective map is
obviously a monomorphism. The converse is not necessarily true!
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The Yoga of Category Theory

Instead of “surjective map”, think “right-cancellative map”, i.e. a map 𝑓 ∶ 𝑋 → 𝑌 s.t.,

𝑔 ∘ 𝑓 = ℎ ∘ 𝑓 ⟹ 𝑔 = ℎ

for all 𝑔, ℎ ∶ 𝑌 → 𝑍 . This is called an epimorphism.

Surjectivity does not make sense in all categories, but in the ones that do, an surjective
map is obviously an epimorphism. The converse is not necessarily true!
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The Yoga of Category Theory

Question. How would you characterize isomorphisms in a category?

Answer. A morphism 𝑓 ∶ 𝑋 → 𝑌 is an isomorphism if there exists 𝑔 ∶ 𝑌 → 𝑋 s.t.

𝑔 ∘ 𝑓 = id𝑋 and 𝑓 ∘ 𝑔 = id𝑌

in which case 𝑔 is called the inverse of 𝑓 .
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The Yoga of Category Theory

Instead of sub-things of a thing, think in terms of monomorphisms.

Example. Suppose 𝐺 is a group. Instead of thinking a subgroup 𝐻 as a subset of 𝐺 closed
under operation and identity, think of it as a pair (𝐻 , 𝑖) where 𝐻 is a group and 𝑖 ∶ 𝐻 → 𝐺 a
monomorphism, up to an equivalence (𝐻 , 𝑖) ≅ (𝐻 ′, 𝑖′) if exists isomorphism 𝜙 ∶ 𝐻 → 𝐻 ′ s.t.

𝐻 𝐺

𝐻 ′

𝑖

𝜙 𝑖′

commutes, i.e. 𝑖 = 𝑖′ ∘ 𝜙. In fact, this is how we define subobjects in a any category.
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The Yoga of Category Theory

Exercise. Dually, how would you characterize quotient objects of an object in a category?
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The Yoga of Category Theory

Let 𝐴, 𝐵 ∈ 𝒞 , where we have a notion of product 𝐴 × 𝐵 e.g. if 𝒞 ∈ {Set,Grp,Ring}.

Instead of thinking 𝐴 × 𝐵 as pairs of elements (with possible additional structure),

Think of 𝐴 × 𝐵 as (𝑃, 𝜋𝐴, 𝜋𝐵) where 𝑃 ∈ 𝒞 and

𝜋𝐴 ∶ 𝑃 → 𝐴
𝜋𝐵 ∶ 𝑃 → 𝐵

are morphisms satisfying the universal property of products.
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The Yoga of Category Theory

Universal Property of Products. For all 𝑄 ∈ 𝒞 and 𝜏𝐴 ∶ 𝑄 → 𝐴 and 𝜏𝐵 ∶ 𝑄 → 𝐵, there
exists a unique morphism 𝑞 ∶ 𝑄 → 𝑃 s.t. 𝜏𝐴 = 𝜋𝐴 ∘ 𝑞 and 𝜏𝐵 = 𝜋𝐵 ∘ 𝑞.

𝑄

𝐵 𝑃 𝐴𝜋𝐴𝜋𝐵

𝜏𝐵 𝜏𝐴𝑞

Here (𝑄, 𝜏𝐴, 𝜏𝐵) is a “test” to find the “smallest/universal product” (𝑃, 𝜋𝐴, 𝜋𝐵).

In fact, this is how we define products in an arbitrary category.
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The Yoga of Category Theory

Exercise. Try formulating the idea of coproducts, the dual notion to products.
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The Yoga of Category Theory

In math, we often encounter situations where we want to combine different kinds of
structures in a compatible way (e.g. ordered fields, Lie groups, topological vector spaces).

Here, we will talk about one example: topological groups.

Definition. A topological group is a group 𝐺 with a topology such that the maps

𝑚 ∶ 𝐺 × 𝐺 → 𝐺
inv ∶ 𝐺 → 𝐺

(𝑔, ℎ) ↦ 𝑔ℎ
𝑔 ↦ 𝑔−1

are continuous (where 𝐺 × 𝐺 has the product topology).
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The Yoga of Category Theory

Instead of “topological group”, think “group object in Top”.

Definition. A group object in a category 𝒞 with finite products is an object 𝐺 ∈ 𝒞 with

𝑚 ∶ 𝐺 × 𝐺 → 𝐺
𝑒 ∶ 1 → 𝐺

inv ∶ 𝐺 → 𝐺
where 1 is the terminal object (the object such that there exists a unique 𝑋 → 1 for each 𝑋 )
satisfying the “group axioms”, i.e. the following three diagrams commute.

𝐺 × 𝐺 × 𝐺 𝐺 × 𝐺

𝐺 × 𝐺 𝐺

(id,𝑚)

(𝑚,id) 𝑚

𝑚

𝐺 𝐺 × 𝐺

𝐺 × 𝐺 𝐺

(id,𝑒)

(𝑒,id) 𝑚

𝑚

id
𝐺 𝐺 × 𝐺

𝐺 × 𝐺 𝐺
(id,inv)

(inv,id)

𝑚
𝑚
𝑒
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Universal Properties

Rule 3. Always define things (and think of things) in terms of their universal properties.
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Universal Properties

Why in terms of universal properties?

⊚ It is the categorical philosophy to think of canonical maps equipped to the objects
(such as projections in the case of products) as part of the object’s data.

⊚ It is better to define an object by what it does instead of what it is concretely (and to
giving a concrete construction, it suffice to check it satisfies the universal property),
and this is often more elegant and conceptual than a concrete construction.

⊚ It allows conceptual non-element-wise proofs.

⊚ It allows for easier abstractions and analogies.
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Universal Properties

What do universal properties do?

Example. (Universal Property of Tensor Products) Let 𝑉 ,𝑊 be 𝑘-vector spaces, their tensor
product is a pair (𝑉 ⊗ 𝑊 ,⊗) where 𝑉 ⊗ 𝑊 is a 𝑘-vector space and ⊗ ∶ 𝑉 × 𝑊 → 𝑉 ⊗ 𝑊 a
bilinear map such that for every pair (𝑉 ⊗′ 𝑊,⊗′) where 𝑉 ⊗′ 𝑊 is a 𝑘-vector space and
⊗′ ∶ 𝑉 × 𝑊 → 𝑉 ⊗′ 𝑊 a bilinear map, exists unique ℎ ∶ 𝑉 ⊗ 𝑊 → 𝑉 ⊗′ 𝑊 s.t. ⊗′ = ℎ ∘ ⊗.

We use a “test” (𝑉 ⊗′ 𝑊,⊗′) to find “smallest/universal” (𝑉 ⊗ 𝑊 ,⊗).
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product is a pair (𝑉 ⊗ 𝑊 ,⊗) where 𝑉 ⊗ 𝑊 is a 𝑘-vector space and ⊗ ∶ 𝑉 × 𝑊 → 𝑉 ⊗ 𝑊 a
bilinear map such that for every pair (𝑉 ⊗′ 𝑊,⊗′) where 𝑉 ⊗′ 𝑊 is a 𝑘-vector space and
⊗′ ∶ 𝑉 × 𝑊 → 𝑉 ⊗′ 𝑊 a bilinear map, exists unique ℎ ∶ 𝑉 ⊗ 𝑊 → 𝑉 ⊗′ 𝑊 s.t. ⊗′ = ℎ ∘ ⊗.

We use a “test” (𝑉 ⊗′ 𝑊,⊗′) to find “smallest/universal” (𝑉 ⊗ 𝑊 ,⊗).
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Universal Properties

Definition. The initial object of a category 𝒞 is an object 𝐼 ∈ 𝒞 such that for each object
𝑋 ∈ 𝒞 there exists a unique morphism 𝐼 → 𝑋 . The initial object 𝐼 is unique up to (a
unique) isomorphism. Dually, one could define the terminal object.

Suppose 𝒞 is the category where objects consist of all pairs (𝑉 ⊗ 𝑊 ,⊗) (where 𝑉 ⊗ 𝑊 is a
𝑘-vector space and ⊗ ∶ 𝑉 × 𝑊 → 𝑉 ⊗ 𝑊 a bilinear map), and a morphism

ℎ ∶ (𝑉 ⊗ 𝑊 ,⊗) → (𝑉 ⊗′ 𝑊,⊗′)

is a linear map ℎ ∶ 𝑉 ⊗ 𝑊 → 𝑉 ⊗′ 𝑊 such that ⊗′ = ℎ ∘ ⊗, then the universal property of
tensor products is saying that the tensor product is the initial object in the category 𝒞 .
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Universal Properties

All universal properties are formulated this way!

In other words, what all universal properties do is finding the initial (or dually, the
terminal) object in a particular category, which, in fully generality, is a comma category.
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Universal Properties

Question. Let 𝒞 be the category where objects are (𝑋 , 𝜉 , 𝑢) where

⊚ 𝑋 is a Banach space

⊚ 𝜉 ∶ 𝑋 ⊕ 𝑋 → 𝑋
⊚ 𝑢 ∈ 𝑋

and morphisms are contracting linear maps preserving 𝜉 and 𝑢.

What is the initial object in this category (it does have one)?
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Universal Properties

Answer. The initial object of 𝒞 is (𝐿1[0, 1], 𝛾 , 1) where 𝛾 is the “concatenation” map, 1 is
the constant function with value 1, and 𝐿1[0, 1] the space of integrable functions on [0, 1]

Integrability pops out just by adding two simple pieces of information!
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Universal Properties

Exercise. Given a set 𝑋 , how would you characterize the free group Free(𝑋) generated by
elements of 𝑋 in terms of a universal property?

Exercise. Given a topological space 𝑋 , how would you characterize the closure of a subset
𝑆 ⊆ 𝑋 in terms of a universal property?

Exercise. Let ℚ be the field of rational numbers, how would you characterize the field
extension ℚ ↪ ℚ(√2) in terms of a universal property?
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Universal Properties

Many structures defined by universal properties are generalized by limits and colimits.
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Functors and Natural Transformations



Functors and Natural Transformations

Rule 3. We must go one further level of abstraction.

Set Top

Grp

𝒞 𝒟
𝐹

𝐺

We would like to study

⊚ functors: “morphisms” between categories,

⊚ natural transformations: “morphisms” between “morphisms” between categories.
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Functors and Natural Transformations

Definition. Let 𝒞 ,𝒟 be categories, a (covariant) functor

𝐹 ∶ 𝒞 ⟶ 𝒟

consists of the following data

⊚ an object 𝐹(𝑋) ∈ 𝒟 for each 𝑋 ∈ 𝒞 ,

⊚ a morphism 𝐹𝑓 ∶ 𝐹(𝑋) → 𝐹(𝑌 ) in 𝒟 for 𝑓 ∶ 𝑋 → 𝑌 in 𝒞 ,

such that the following is satisfied

⊚ 𝐹 id𝑋 = id𝐹(𝑋) for each 𝑋 ∈ 𝒞
⊚ 𝐹(𝑔 ∘ 𝑓 ) = 𝐹𝑔 ∘ 𝐹𝑓 for each 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 in 𝒞

A contravariant functor is the same but with arrow reversed. Alternatively, a contravariant
functor 𝒞 → 𝒟 is a covariant functor 𝒞 op → 𝒟 , where 𝒞 op reverses arrows in 𝒞 .
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Functors and Natural Transformations

A functor 𝐹 ∶ 𝒞 → 𝒟 can be viewed as

⊚ a “morphism” from the categories 𝒞 to the category 𝒟 ,

⊚ a diagram in 𝒟 indexed by 𝒞 ,

⊚ a representation of 𝒞 in 𝒟 (or an action of 𝒞 on 𝒟 ),

⊚ (when 𝐹 is contravariant) a presheaf on 𝒞 with values in 𝒟 .

We will focus on the first three perspectives.
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Functors and Natural Transformations

Here are some examples of functors as “morphisms of categories”.

Example. (−)× ∶ Ring → Grp which sends a ring to its group of units, and sends a
morphism of rings to the restriction of it to the units.

Example. GL𝑛(−) ∶ Ring → Grp which sends a ring to its 𝑛-by-𝑛 matrix group, and sends
a morphism of rings to a homomorphism defined by applying it entry-wise to the matrix.

Example. 𝜋1 ∶ pcTop∗ → Grp which sends a path-connected topological space to its
fundamental group and a continuous function to its induced map.

Example. Let 𝒞 be a category such that each Hom(𝑋 , 𝑌 ) is a set. Fix 𝐴 ∈ 𝒞 . Define the
Hom-functor Hom(𝐴, −) ∶ 𝒞 → Set sending an object 𝑋 ↦ Hom(𝐴, 𝑋) and a morphism
𝑓 ↦ [𝑔 ↦ 𝑓 ∘ 𝑔]. We define dually the contravariant functor Hom(−, 𝐴) ∶ 𝒞 → Set.

output.tex 34 56



Functors and Natural Transformations

Here are some examples of functors as “morphisms of categories”.

Example. (−)× ∶ Ring → Grp which sends a ring to its group of units, and sends a
morphism of rings to the restriction of it to the units.

Example. GL𝑛(−) ∶ Ring → Grp which sends a ring to its 𝑛-by-𝑛 matrix group, and sends
a morphism of rings to a homomorphism defined by applying it entry-wise to the matrix.

Example. 𝜋1 ∶ pcTop∗ → Grp which sends a path-connected topological space to its
fundamental group and a continuous function to its induced map.

Example. Let 𝒞 be a category such that each Hom(𝑋 , 𝑌 ) is a set. Fix 𝐴 ∈ 𝒞 . Define the
Hom-functor Hom(𝐴, −) ∶ 𝒞 → Set sending an object 𝑋 ↦ Hom(𝐴, 𝑋) and a morphism
𝑓 ↦ [𝑔 ↦ 𝑓 ∘ 𝑔]. We define dually the contravariant functor Hom(−, 𝐴) ∶ 𝒞 → Set.

output.tex 34 56



Functors and Natural Transformations

Here are some examples of functors as “morphisms of categories”.

Example. (−)× ∶ Ring → Grp which sends a ring to its group of units, and sends a
morphism of rings to the restriction of it to the units.

Example. GL𝑛(−) ∶ Ring → Grp which sends a ring to its 𝑛-by-𝑛 matrix group, and sends
a morphism of rings to a homomorphism defined by applying it entry-wise to the matrix.

Example. 𝜋1 ∶ pcTop∗ → Grp which sends a path-connected topological space to its
fundamental group and a continuous function to its induced map.

Example. Let 𝒞 be a category such that each Hom(𝑋 , 𝑌 ) is a set. Fix 𝐴 ∈ 𝒞 . Define the
Hom-functor Hom(𝐴, −) ∶ 𝒞 → Set sending an object 𝑋 ↦ Hom(𝐴, 𝑋) and a morphism
𝑓 ↦ [𝑔 ↦ 𝑓 ∘ 𝑔]. We define dually the contravariant functor Hom(−, 𝐴) ∶ 𝒞 → Set.

output.tex 34 56



Functors and Natural Transformations

Here are some examples of functors as “morphisms of categories”.

Example. (−)× ∶ Ring → Grp which sends a ring to its group of units, and sends a
morphism of rings to the restriction of it to the units.

Example. GL𝑛(−) ∶ Ring → Grp which sends a ring to its 𝑛-by-𝑛 matrix group, and sends
a morphism of rings to a homomorphism defined by applying it entry-wise to the matrix.

Example. 𝜋1 ∶ pcTop∗ → Grp which sends a path-connected topological space to its
fundamental group and a continuous function to its induced map.

Example. Let 𝒞 be a category such that each Hom(𝑋 , 𝑌 ) is a set. Fix 𝐴 ∈ 𝒞 . Define the
Hom-functor Hom(𝐴, −) ∶ 𝒞 → Set sending an object 𝑋 ↦ Hom(𝐴, 𝑋) and a morphism
𝑓 ↦ [𝑔 ↦ 𝑓 ∘ 𝑔]. We define dually the contravariant functor Hom(−, 𝐴) ∶ 𝒞 → Set.

output.tex 34 56



Functors and Natural Transformations

Here are some examples of functors as “morphisms of categories”.

Example. (−)× ∶ Ring → Grp which sends a ring to its group of units, and sends a
morphism of rings to the restriction of it to the units.

Example. GL𝑛(−) ∶ Ring → Grp which sends a ring to its 𝑛-by-𝑛 matrix group, and sends
a morphism of rings to a homomorphism defined by applying it entry-wise to the matrix.

Example. 𝜋1 ∶ pcTop∗ → Grp which sends a path-connected topological space to its
fundamental group and a continuous function to its induced map.

Example. Let 𝒞 be a category such that each Hom(𝑋 , 𝑌 ) is a set. Fix 𝐴 ∈ 𝒞 . Define the
Hom-functor Hom(𝐴, −) ∶ 𝒞 → Set sending an object 𝑋 ↦ Hom(𝐴, 𝑋) and a morphism
𝑓 ↦ [𝑔 ↦ 𝑓 ∘ 𝑔]. We define dually the contravariant functor Hom(−, 𝐴) ∶ 𝒞 → Set.
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Functors and Natural Transformations

Theorem. Given a path-connected topological group 𝐺, then 𝜋1(𝐺) is abelian.

Proof. The usual proof in textbooks uses Eckmann-Hilton argument, but category theory
gives us a more conceptual proof. The fundamental group functor

𝜋1 ∶ pcTop → Grp

preserves group objects since it preserves terminal object and products, therefore it sends
group objects in pcTop, the path-connected topological groups, to group objects in Grp,
which the reader may check, are precisely the abelian groups.
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Functors and Natural Transformations

A functor 𝐹 ∶ 𝒞 → 𝒟 can be viewed as a diagram in 𝒟 indexed by (or in the shape of) 𝒞 .

• •

•
⟼

𝐴 𝐵

𝐶

𝑓

𝑔
ℎ

Thus, the diagram 𝐹 commutes when for each 𝑓 , 𝑔 ∶ 𝑋 → 𝑌 in 𝒞 , we have 𝐹𝑓 = 𝐹𝑔.
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Functors and Natural Transformations

Let 𝐺 be a group, then we can view 𝐺 as a category B𝐺 called the delooping groupoid.

The category B𝐺 has one object ∗ and Hom(∗, ∗) = 𝐺 with group operation as composition.

Definition. A permutation representation of 𝐺 is a functor 𝐹 ∶ B𝐺 → Set.

Definition. A linear representation of 𝐺 is a functor 𝐹 ∶ B𝐺 → 𝑘-Vect.
Exercise. Convince yourself this is equivalent to the usual linear representation of a group
𝐺, which is a (𝜌, 𝑉 ) where 𝑉 is a vector space and 𝜌 ∶ 𝐺 → GL(𝑉 ) a homomorphism.
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Functors and Natural Transformations

Definition. Let 𝐹 , 𝐺 ∶ 𝒞 → 𝒟 be functors, then a natural transformation Φ ∶ 𝐹 → 𝐺
consists of a morphism Φ𝑋 ∶ 𝐹(𝑋) → 𝐺(𝑋) for each 𝑋 ∈ 𝒞 such that each

𝐹(𝑋) 𝐺(𝑋)

𝐹(𝑌 ) 𝐺(𝑌 )

Φ𝑋

𝐺𝑓𝐹𝑓

Φ𝑌

commutes. Let Fun(𝒞 ,𝒟) be the category of functors from 𝒞 to 𝒟 , where morphisms are
natural transformations, the isomorphisms in which are called natural isomorphisms.
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Functors and Natural Transformations

Example. Define the natural transformation det ∶ GL𝑛(−) → (−)× where for each ring 𝑅
the morphism det𝑅 ∶ GL𝑛(𝑅) → 𝑅× is given by the determinant map. This is a natural
transformation because it is defined by the same formula

det𝑅((𝑎𝑖,𝑗)) = ∑
𝜎∈𝑆𝑛

∏
𝑖
sgn(𝜎) 𝑎𝑖,𝜎(𝑖)

across rings, so it commutes with any ring homomorphism.
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Functors and Natural Transformations

Exercise. Express Riesz representation theorem as a natural isomorphism

CHaus Ban

𝐹

𝐺
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Functors and Natural Transformations

Question. What does it mean for an equivalence or isomorphism to be natural?
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Functors and Natural Transformations

Given a finite dimensional 𝑘-vector space 𝑉 with dual space 𝑉 ∗ = Hom(𝑉 , 𝑘).

Question. Recall that, by choosing bases, there is an isomorphism

𝜙 ∶ 𝑉 ⟶ 𝑉 ∗

Is this isomorphism natural?

Question. Recall that there is an isomorphism

𝜙 ∶ 𝑉 ⟶ 𝑉 ∗∗ 𝑣 ⟼ [𝑓 ↦ 𝑓 (𝑣)]

Is this isomorphism natural?
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Functors and Natural Transformations
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Functors and Natural Transformations

Answer. This second isomorphism is natural and the first one isn’t, because unlike the
first one, the second one does not depend on a choice of bases. It is “uniform” across vector
spaces (defined by the same formula). In other words, it is functorial.
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Yoneda Lemma

“The Yoneda lemma is the hardest trivial thing in mathematics.” – Dan Piponi
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Yoneda Lemma

Theorem. Let 𝒞 be a category where each Hom(𝑋 , 𝑌 ) is a set, and let 𝐴 ∈ 𝒞 . Let
𝐹 ∶ 𝒞 op → Set be a functor, then there is an isomorphism

Hom(Hom(−, 𝐴), 𝐹 ) ≅ 𝐹(𝐴)

functorial in 𝐴 and 𝐹 (natural isomorphism as functors 𝒞 × Fun(𝒞 , Set) → Set).
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Yoneda Lemma

Proof. For Φ ∶ Hom(−, 𝐴) → 𝐹 and 𝑢 = Φ𝐴(id𝐴). If 𝑓 ∶ 𝑋 → 𝐴 then

Hom(𝐴, 𝐴) Hom(𝑋 , 𝐴)

𝐹(𝐴) 𝐹(𝑋)
Φ𝐴 Φ𝑋

𝑓∗

𝐹𝑓

commutes. Thus Φ𝑋 (𝑓 ) = (𝐹𝑓 )(𝑢) is determined by 𝑢, which gives the isomorphism. This
does not depend on any choice based on 𝐴 or 𝐹 , thus functorial in 𝐴 and 𝐹 .

output.tex 46 56



Yoneda Lemma

All information of 𝐴 is encoded in Hom(−, 𝐴), and vice versa.
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Yoneda Lemma

The Yoneda lemma also implies that the functor

𝒞 ⟶ Fun(𝒞 op, Set)
𝐴 ⟼ Hom(−, 𝐴)

called the Yoneda embedding, is fully faithful, i.e. we have

Hom(Hom(−, 𝑋),Hom(−, 𝑌 )) ≅ Hom(𝑋 , 𝑌 )

for all 𝑋, 𝑌 ∈ 𝒞 .
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Applications

Rule 4. By the yoga of Yoneda lemma, we view a mathematical structures 𝑋 as Hom(−, 𝑋).
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Applications

Let 𝑅 be a ring, then an affine scheme Spec𝑅 is a “geometric” space “built from” 𝑅 in a
way such that 𝑅 is the “ring of functions” on Spec𝑅.

A scheme is some “geometric” space that locally looks like an affine scheme.
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Applications

A scheme 𝑋 determines and is determined by its functor of points

Hom(−, 𝑋) ∶ Schop → Set

Plugging in Spec(𝑘) in this functor gives 𝑘-rational points of 𝑋 .
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Application

This combines with Grothendieck’s “relative point of view”.

We study morphisms of schemes Sch/𝑆 as if they are schemes (“over” a base scheme 𝑆).
This makes precise what it means to “work over a field 𝑘” (over the base Spec 𝑘).
This leads to base change Sch/𝑋 → Sch/𝑌 (given by fibred products).

The inverse process of base change is known as descent theory.
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Applications

The functor of points help us define (fine) moduli spaces.

Example. For 0 < 𝑘 < 𝑛, the Grassmannian Gr(𝑘, 𝑛) ∶ Schop → Set

Gr(𝑘, 𝑛)(𝑆) = {𝛼 ∶ 𝒪⊕𝑛
𝑆 → 𝒱 }/ ∼

where each 𝛼 surjective, each 𝒱 locally free rank 𝑘.
The Grassmannian is representable by a scheme.

output.tex 53 56



Applications

The functor of points help us define (fine) moduli spaces.

Example. For 0 < 𝑘 < 𝑛, the Grassmannian Gr(𝑘, 𝑛) ∶ Schop → Set

Gr(𝑘, 𝑛)(𝑆) = {𝛼 ∶ 𝒪⊕𝑛
𝑆 → 𝒱 }/ ∼

where each 𝛼 surjective, each 𝒱 locally free rank 𝑘.

The Grassmannian is representable by a scheme.

output.tex 53 56



Applications

The functor of points help us define (fine) moduli spaces.

Example. For 0 < 𝑘 < 𝑛, the Grassmannian Gr(𝑘, 𝑛) ∶ Schop → Set

Gr(𝑘, 𝑛)(𝑆) = {𝛼 ∶ 𝒪⊕𝑛
𝑆 → 𝒱 }/ ∼

where each 𝛼 surjective, each 𝒱 locally free rank 𝑘.
The Grassmannian is representable by a scheme.

output.tex 53 56



Applications

A type of objects with nontrivial automorphisms does not have a fine moduli space.

Example. elliptic curves, more generally algebraic curves of genus 𝑔
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Applications

What if your functor 𝐹 ∶ Schop → Set is not representable?

Easy Solution. We pick universal (𝑆, Ψ ∶ 𝐹 → ℎ𝑆) which we call a coarse moduli space.

Hard Solution. Develop the theory of Artin stacks and Deligne-Mumford stacks.
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Applications

Category theory has been used for:

⊚ Homology theory, homotopy theory, K-theory

⊚ Algebraic geometry and other geometries

⊚ Representation theory

⊚ Mathematical logic, type theory, functional programming

⊚ Mathematical physics

and many more.
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