Galois Category & Étale Fundamental Group

Yunhai Xiang April 12, 2022

Final presentation for PMATH 965 *algebraic stacks* of Winter 2022 Supervized by Prof. Matthew Satriano at University of Waterloo

- 1. Motivation
- 2. Galois category
- 3. Finite étale morphism

4. Étale fundamental group

Motivation

We begin by some motivations from algebraic topology.

Recall the fundamental group of a topological space X at $x \in X$

$$\pi_1(x,X) = \{\textit{cont. } \gamma : [0,1] \rightarrow X \textit{ where } \gamma(0) = \gamma(1) = x\} / \sim$$

where $\gamma \sim \tau$ iff their homotopic, with concatonation as group operation. Recall a covering space $p: E \to X$ is a fiber bundle with discrete fibers.

It is shown that the fundamental group is isomorphic to the group of deck transformations of the universal covering space.

In fact, there is a well known stronger result.

Theorem 1.1 (fundamental theorem of covering spaces)

Suppose X is path-connected, locally path-connected, and semi-locally simply-connected topological space, then there is an equivalence between

- i. the category of covering spaces of X, and
- ii. the category of $\pi_1(x, X)$ -sets, and
- iii. the category of subgroups of $\pi_1(x, X)$ up to conjugacy.

This is strikingly reminiscent of Galois theory!

Recall that given a Galois extension E/F, the Galois group

$$Gal(E/F) = \{isom. \ \alpha : E \to E : \forall x \in F, \alpha(x) = x\}$$

with composition as group operation.

The fundamental theorem of Galois theory reveals a correspondence between Galois extensions and subgroups of the Galois group, which resembles the fundamental theorem of covering spaces.

Theorem 1.2 (fundamental theorem of Galois theory)

Suppose k is a field with $K = \overline{k}$, then there is an equivalence between

i. the category of Galois extensions of k, and

- ii. the category Gal(K/k)-sets, and
- iii. the category of subgroups of Gal(K/k).

This is a categorical reformulation of the well known version.

We observe that X is analogous to Y, where

Х	Y
Galois extensions	covering spaces
algebraic closure	universal covering space
Galois group	fundamental group
k-automorphisms	deck transformations
fun'l theorem of Galois theory	fun'l theorem of covering spaces

There is only a superficial difference between the two fundamental theorems: one isomorphism is covariant and the other is contravariant.

We will discuss *étale fundamental groups* of schemes, which is a generalization of both the Galois groups and the topological fundamental groups. However, we must first introduce some necessary backgrounds.

Galois category

Suppose C is a category and $\mathcal{F}: C \to \mathbf{Set}$ a functor, then there is a canonical injective function

$$\operatorname{Aut}(\mathfrak{F}) \longrightarrow \prod_{X \in \mathcal{C}} \operatorname{Aut}(\mathfrak{F}(X)) \qquad \phi \mapsto [X \mapsto \phi_X]$$

For each set E, we give Aut(E) the compact open topology (i.e. the coarsest topology such that $Aut(E) \times E \rightarrow E$ by $(f, e) \mapsto f(e)$ is cont.), which is discrete when E is finite. Next, we endow $Aut(\mathcal{F})$ the topology induced from the canonical map above.

This map identifies $\operatorname{Aut}(\mathcal{F})$ with a closed subgroup of $\prod_{X \in \mathcal{C}} \operatorname{Aut}(\mathcal{F}(X))$, and in particular if $\mathcal{F}(X)$ is finite for all X, then $\operatorname{Aut}(\mathcal{F})$ is profinite.

Definition 2.3 (profinite completion)

The profinite completion of a topological group G is

$$G^{\wedge} = \varprojlim_{\substack{open \ U \leq G \\ of \ finite \ index}} G/U$$

has the following universal property: every morphism $G \to H$ where H is profinite factors uniquely as $G \to G^{\wedge} \to H$.

Lemma 2.4

Let G be a topological group, and $\mathcal{F} : \operatorname{Rep}_{\mathsf{FSet}}(G) \to \operatorname{Set}$ the forgetful functor where $\operatorname{Rep}_{\mathsf{FSet}}(G)$ is the category of finite G-sets, then

 $G^{\wedge} \cong \operatorname{Aut}(\mathfrak{F})$

as topological groups.

Sketch of Proof.

Take the canonical morphism $G \to \operatorname{Aut}(\mathfrak{F})$ of topological groups, there is an induced $G^{\wedge} \to \operatorname{Aut}(\mathfrak{F})$ via universal property, which is shown to be injective, and is a homeomorphism if shown its image is dense by Lemma 5.17.8 [Tag 08YE] of Stacks Project. This is shown by showing that for every $\gamma \in \operatorname{Aut}(\mathfrak{F})$ and finite G-set X, there is $g \in G$ s.t. g and γ induce the same action on $\mathfrak{F}(X)$.

Lemma 2.5

Let G be a topological group, and $\mathfrak{F} : \operatorname{Rep}_{\mathsf{FSet}}(G) \to \operatorname{Set}$ be an exact functor where $\mathfrak{F}(X)$ is finite for all X, then \mathfrak{F} is isomorphic to the forgetful functor $\operatorname{Rep}_{\mathsf{FSet}}(G) \to \operatorname{Set}$.

Sketch of Proof.

After showing the inverse limit over $\mathfrak{F}(G/U)$ for all open $U \leq G$ of finite index is nonempty, pick an element γ . Identify the forgetful functor with

 $X \mapsto \varinjlim_{\substack{open \ U \leq G \\ of finite \ index}} \mathsf{Mor}(G/U, X)$

where $f : G/U \to X$ corresponds to f(eU). Thus γ induces an isomorphism t from the forgetful functor to \mathfrak{F} as follows: for $x \in X$ choose U and $f : G/U \to X$ sending eU to x, let $t_X(x) = \mathfrak{F}(f)(\gamma_U)$. \Box

Example 2.6

Let \mathcal{C} be a category and $\mathcal{F}: \mathcal{C} \to \mathbf{Set}$ a functor with $\mathcal{F}(X)$ finite for all $X \in \mathcal{C}$. Previously we defined the profinite topological group Aut(\mathcal{F}), thus there is a canonical functor

$$\mathcal{C} \to \mathsf{Rep}_{\mathsf{FSet}}(\mathsf{Aut}(\mathfrak{F})) \qquad X \mapsto \mathfrak{F}(X)$$

endowed with the induced action of $Aut(\mathcal{F})$.

The reason we need Galois category is that we want to single out the categories C and functors \mathcal{F} as in Example 2.6 where the canonical functor defined is an equivalence of categories.

Definition 2.7 (Galois category)

A Galois category is a category C with a functor $\mathfrak{F}: \mathcal{C} \to \mathbf{Set}$ s.t.

- i. $\mathfrak{F}(X)$ is finite for all X, and
- ii. $\ensuremath{\mathcal{C}}$ has finite limits and colimits, and
- iii. $\ensuremath{\mathfrak{F}}$ is exact and conservative, and
- iv. every object of ${\mathcal C}$ is a finite coproduct of connected components.

Lemma 2.8 (properties of Galois categories)

Suppose $\langle \mathcal{C}, \mathfrak{F} \rangle$ is a Galois category, then

- i. F is faithful
- ii. F preserves mono/epimorphisms and initial/final objects
- iii. if X, Y are connected then $X \rightarrow Y$ is epic,
- iv. if X is connected, suppose $a, b : X \to Y$ are two morphisms, then a = b if $\mathfrak{F}(a)$ and $\mathfrak{F}(b)$ agree on one element of $\mathfrak{F}(X)$.

Proof.

Lemma 58.3.7 [Tag 0BN0] of Stacks Project.

Given a Galois category $\langle C, \mathcal{F} \rangle$, from Lemma 2.8, if X is connected,

 $|\operatorname{Aut}(X)| \leq |\mathfrak{F}(X)|$

We say that X is *Galois* if equality holds. It is straightforward to see that X is Galois iff X is connected and Aut(X) acts transitively on $\mathcal{F}(X)$.

The following is a key lemma.

Lemma 2.9

Let $\langle \mathcal{C}, \mathfrak{F} \rangle$ be a Galois category with connected object X, then

- i. there exists Galois object Y and morphism $Y \rightarrow X$,
- ii. the action of $Aut(\mathcal{F})$ on $\mathcal{F}(X)$ (as per Example 2.6) is transitive,
- iii. the canonical functor (as per Example 2.6) is an equivalence,
- iv. suppose $\langle \mathcal{D}, \mathfrak{G} \rangle$ is a Galois category, $\mathfrak{H} : \mathcal{C} \to \mathcal{D}$ is an exact functor, then there is isomorphism $t : \mathfrak{G} \circ \mathfrak{H} \to \mathfrak{F}$.

Proof.

The proof is long and technical, see Lemma 58.3.8 [Tag 0BN2] to Lemma 58.3.11 [Tag 0BN5] of Stacks Project.

Finite étale morphism

Recall from class the definition of étale morphisms.

Definition 3.10 (étale morphisms)

A morphism of schemes is étale iff it is

- i. smooth and unramified, or
- ii. smooth and locally quasi-finite, or
- iii. flat and unramified, or
- iv. formally étale and locally of finite presentation,

where all these conditions are equivalent.

An étale morphism is analogous to a covering map in topology.

Recall an important example from class.

Example 3.11

Suppose X is a scheme over k, then its structure morphism is étale iff

$$X \cong \coprod_i \operatorname{Spec}(K_i)$$

where K_i are finite separable extensions of k.

Proof.

Lemma 29.36.7(1) [Tag 02GL] of Stacks Project.

Lemma 3.12 (properties of étale morphisms)

- i. composition of étale morphisms is étale,
- ii. base change of étale morphisms is étale,
- iii. étale morphisms are local on the source and the base,
- iv. if $X \to Y \to Z$ and $Y \to Z$ are étale, then so is $X \to Y$.

Proof.

Proved in class.

Suppose X is a scheme, we use $\mathbf{F\acute{E}t}_X$ to denote the full subcategory of \mathbf{Sch}/X where the objects are finite and étale. An object $Y \to X$ of $\mathbf{F\acute{E}t}_X$ is a *Galois cover* if Y is a Galois object.

Lemma 3.13

The category $\mathbf{F}\mathbf{\acute{E}t}_X$

- i. has finite limits and colimits,
- ii. for any $Y \to X$, the base change functor $\mathbf{F\acute{t}}_X \to \mathbf{F\acute{t}}_Y$ is exact.

Sketch of Proof.

First, $\mathbf{F\acute{Et}}_X$ has final object and admits fibred products, hence admits finite limits, and base change is left exact as they commute with them. Next, $\mathbf{F\acute{Et}}_X$ admits finite coproducts (disjoint unions). It suffice to show that $\mathbf{F\acute{Et}}_X$ admits coequalizers, so that $\mathbf{F\acute{Et}}_X$ admits colimits and the base change functor is right exact. This is done by a direct construction. Let X be a connected scheme with \overline{x} a geometric point, then the functor

$$\mathfrak{F}_{\overline{X}}: \mathsf{F\acute{E}t}_X \to \mathsf{Set} \qquad Y \mapsto |Y_{\overline{X}}|$$

defines a Galois category. This functor is called the fibre functor.

We verify $\langle \mathbf{F\acute{t}}_X, \mathcal{F}_{\overline{x}} \rangle$ satisfies Definition 2.7. First $\mathbf{F\acute{t}}_{\overline{x}} \cong \mathbf{FSet}$ by Example 3.11. Thus $\mathcal{F}_{\overline{x}}$ is a base change functor for $\overline{x} \to X$, so by Lemma 3.13 $\mathcal{F}_{\overline{x}}$ is exact (and $\mathbf{F\acute{t}}_X$ admits finite limits and colimits). We can verify that each object is connected iff they are connected as a scheme, so they are finite coproduct of connected components by Lemma 5.7.7 [Tag 07VB] of Stacks Project. It is straightforward to verify that $\mathcal{F}_{\overline{x}}$ is conservative.

Étale fundamental group

Definition 4.14 (étale fundamental group)

Suppose that X is a connected scheme and \overline{x} is a geometric point, then the *(étale)* fundamental group of X at \overline{x} is defined as

$$\pi_1(\overline{x},X) = \operatorname{Aut}(\mathcal{F}_{\overline{x}})$$

endowed with the canonical profinite topology (as per Section 2), where $\mathcal{F}_{\overline{x}}$ is the fiber functor (as per Section 3).

Theorem 4.15 (main theorem)

Suppose X is a connected scheme with geometric point \overline{x} .

i. the functor $\mathfrak{F}_{\overline{x}}$ induces a canonical equivalence (as per Example 2.6)

$$\mathbf{F\acute{E}t}_X \cong \operatorname{Rep}_{\mathbf{FSet}}(\pi_1(\overline{x}, X))$$

ii. given connected scheme Y and morphism $f : X \to Y$ and let $\overline{y} = f \circ \overline{x}$, then there is a canonical morphism $f_* : \pi_1(\overline{x}, X) \to \pi_1(\overline{y}, Y)$ s.t.

commutes.

Theorem 4.15 explains the correspondances we introduced in Section 1.

Thank you for listening!

References

Aise Johan de Jong et al. (2012) The Stacks Project

- Hendrik Willem Lenstra (1997)
 Galois theory for schemes
- 📄 Alexander Grothendieck (1971)

Revêtements étales et groupe fondamental (SGA 1)

Springer-Verlag, Lecture notes in mathematics

Tamás Szamuely (2009)

Galois Groups and Fundamental Groups

Cambridge University Press