
Galois cohomology and weak Mordell–Weil theorem

Yunhai Xiang

August 15, 2021

Abstract

This is my final project for the Spring 2021 reading course Introduction to Arithmetic Geometry
at University of Waterloo, taught by Faisal Al-Faisal. In this write-up, we discuss an important
tool in arithmetic geometry called Galois cohomology. In particular, we give an application of
Galois cohomology by proving the weak Mordell–Weil theorem.
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1 Introduction

Recall the basic fact from Galois theory that for some perfect field k with algebraic closure K,
the Galois group G = Gal(K/k) is isomorphic to an inverse limit

G ∼= lim
←−

Gal(L/k)

ranging over the finite Galois extensions L/k with the natural projections. The inverse limits
of finite groups, such as the example above, are called profinite groups. By viewing each of the
Galois group Gal(L/k) as a topological group with the discrete topology, the resulting inverse
limit G is endowed with the Krull topology in which a basis for the neighborhood at the identity
is the collection of normal subgroups having finite index in G. This motivates us to apply tools
in homological algebra to solve number theory problems. In particular, Galois cohomology is
the study of group cohomology on Galois modules [1].

2 Group cohomology and Galois cohomology

We begin by revisiting the machinery of group cohomology.

Definition 2.1. Let G be a (multiplicative) group, a G-module is an (additive) abelian group M
along with a group action G×M→ M compatible with addition, i.e. g(a + b) = ga + gb for all
g ∈ G and a, b ∈ M. Equivalently, we can think of a G-module as a Z[G]-module, where Z[G]
is the group ring of G over the ring of integers Z.

We write ModG for the category of G-modules, that is, the category whose objects are G-
modules and morphisms are group homomorphisms that commute with scalar multiplication
i.e. the group homomorphism ϕ : M→ M such that ϕ(gm) = gϕ(m) for m ∈ M and g ∈ G. In
fact, the category ModG can be identified as the category of Z[G]-modules.

Definition 2.2. For group G and G-module M, define the group cochain complex of G as

· · · C2(G; M) C1(G; M) C0(G; M) 0d3 d2 d1 d0

where, for each i ≥ 0, the group of i-cochains Ci(G; M) is the group of maps f : Gi → M with
pointwise addition (viewing G0 = 1 = {1}), and the differential di+1 : Ci(G; M)→ Ci+1(G; M)
is such that di+1 f : Gi+1 → M is the function that maps (g1, . . . , gi+1) to

g1 f (g2, . . . , gi+1) +
i

∑
j=1

(−1)j f (g1, . . . , gj−1, gjgj+1, gj+2, . . . , gi+1) + (−1)i+1 f (g1, . . . , gi)

and d0 : 0→ C0(G; M) is the trivial map 0 7→ [1 7→ 0] where 0 = {0}. The i-th cohomology group
of G is Hi(G; M) = Ker(di+1)/Im(di) for i ≥ 0. This is well defined as di+1 ◦ di = 0 for i ≥ 0.

Example 2.3. For i = 0, 1, the map di+1 f is defined as

(d1 f )(g) = g f (1)− f (1)

(d2 f )(g, h) = g f (h)− f (gh) + f (g)

and therefore the first two cohomology groups are

H0(G; M) = { f ∈ C0(G; M) : ∀g ∈ G, g f (1) = f (1)}

H1(G; M) =
{ f ∈ C1(G; M) : ∀g, h ∈ G, f (gh) = g f (h) + f (g)}
{ f ∈ C1(G; M) : ∃m ∈ M, ∀g ∈ G, f (g) = gm−m}

Note that H0(G; M) can be identified as the stabilizer MG = {m ∈ M : ∀g ∈ G, gm = m}. Let
f ∈ C1(G; M). If f (gh) = g f (h) + f (g) for all g, h ∈ G, then f is called a crossed homomorphism;
and if there exists m ∈ M with f (g) = gm−m for all g ∈ G, then f is called a principal crossed
homomorphism. So H1(G; M) is the crossed homomorphisms modulo the principal ones.
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Let A, B be G-modules and α : A→ B a morphism of G-modules, we remark that α induces
group homomorphisms αi : Ci(G; A)→ Ci(G; B) mapping f 7→ α ◦ f for each i ≥ 0. The maps
αi for i ≥ 0 are viewed collectively as a morphism of the cochain complexes α• : C•(G; A) →
C•(G; B). We denote the differential of the complex C•(G; A) as dA, and that of C•(G; B) as dB,
then the differentials are compatible with α• in the sense of the following lemma.

Lemma 2.4. di
B ◦ αi = αi+1 ◦ di

A for all i ≥ 0.

Proof. This can be proved via a routine check on the related definitions.

By Lemma 2.4, we see that a G-module morphism α induces a well defined homomorphism
on the cohomology groups α∗ : Hi(G; A)→ Hi(G; B) for each i ≥ 0, which is the obvious map
i.e. the map that sends the equivalence class of f to the equivalence class of αi( f ). We omit
the superscript of α∗ for sake of clarity, as it does not cause confusion. The reason we need this
induced homomorphism is because we want to show the existance of long exact sequences in
the cohomology groups. But before we can prove this, we need two more lemmas.

Lemma 2.5. Let G be a group. Suppose we have a short exact sequence of G-modules

0 A B C 0α β

then the induced sequence on the group cochain complex of G

0 C•(G; A) C•(G; B) C•(G, C) 0α• β•

is exact.

Proof. Fix some i ≥ 0. Let f ∈ Ci(G; A) such that α ◦ f = 0, then since α is injective, f = 0.
Hence αi is injective. Let f ∈ Ci(G; C), since β is surjective, f = β ◦ g for some g ∈ Ci(G; B).
Hence βi is surjective. Next, for each f ∈ Ci(G; B) with β ◦ f = 0, since Ker(β) = Im(α), there
exists g ∈ Ci(G; A) with α ◦ g = f . Conversely, for each g ∈ Ci(G; A), we have β ◦ (α ◦ g) =
(β ◦ α) ◦ g = 0, since Ker(β) = Im(α). Thus Ker(βi) = Im(αi). Hence the sequence

0 Ci(G; A) Ci(G; B) Ci(G, C) 0αi βi

is exact, and therefore the induced sequence on the group cochain complexes is exact.

Moreover, the construction in Lemma 2.5 is natural in the sense of natural transformations,
i.e., given a morphism between short exact sequences of G-modules, there is a corresponding
morphism between the long exact sequences given by the induced homomorphisms between
cohomology groups, which we will not explain in detail. Next, we need the following lemma.

Lemma 2.6 (Snake lemma). In an abelian category, given a commutative diagram

A B C 0

0 D E F

a

f

b

g h

c d

where the rows are exact and 0 is the zero object, then there exists an exact sequence

Ker( f ) Ker(g) Ker(h) Coker( f ) Coker(g) Coker(h)δ

where δ is known as the connecting morphism.

Proof. This is a familiar lemma in homological algebra.
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Now, we can finally prove the main theorem of this section.

Theorem 2.7. Let G be a group. Suppose we have a short exact sequence of G-modules

0 A B C 0α β

then there exists a long exact sequence of abelian groups

0 H0(G; A) H0(G; B) H0(G; C) H1(G; A) · · ·α∗ β∗ δ0 α∗

for some homomorphisms δi : Hi(G; C)→ Hi+1(G; A) for i ≥ 0.

Proof. Fix some j ≥ 0, and consider the diagram

0 Cj(G; A) Cj(G; B) Cj(G; C) 0

0 Cj+1(G; A) Cj+1(G; B) Cj+1(G; C) 0

αj

dj+1
A

βj

dj+1
B dj+1

C

αj+1 βj+1

then the rows are exact by Lemma 2.5. The exact sequence of cokernels j = i− 1 and kernels
j = i + 1 can be placed in a second diagram

Ci(G; A)/Im(di
A) Ci(G; B)/Im(di

B) Ci(G; C)/Im(di
C) 0

0 Ker(di+1
A ) Ker(di+1

B ) Ker(di+1
C )

αi

di
A

βi

di
B di

C

αi+1 βi+1

and so by the snake lemma, we have an exact sequence

· · · Hi(G; B) Hi(G; C) Hi+1(G; A) Hi+1(G; B) · · ·α∗ β∗ δi α∗ β∗

by concatonation.

Let A be a subgroup of G, then the inclusion A ↪−→ G induces Res : Hi(G; M) → Hi(A; M),
the restriction map on the cohomologies, and if further that A is normal in G, then the quotient
map G → G/A and inclusion MA ↪−→ M induces Inf : Hi(G/H; MA)→ Hi(G; M), the inflation
map on the cohomologies. We then have the following theorem.

Theorem 2.8. Let G be a group with normal subgroup A and M a G-module, then the sequence

0 H1(G/A; MA) H1(G; M) H1(A; M)Inf Res

is exact.

Proof. The injectivity of inflation is obvious. Let f be a principal crossed homomorphism in
the sense that f is zero in H1(G/A; MA). Suppose that f (g) = (g− 1)a for some a ∈ M and
g ∈ G, then a ∈ MA and f (1) = 0, so Inf is injective. Also, note that Res ◦ Inf( f )(n) = f (n) = 0
for all n ∈ A. Next, let f be a principal crossed homomorphism in the sense that f is zero in
H1(G; A) and suppose Res( f ) = 0. Then there exists a ∈ M with f (n) = (n− 1)a for all n ∈ A.
Define k as another principal crossed homomorphism by k(g) = f (g)− (g− 1)a, then k(n) = 0
for all n ∈ A. Thus k(gn) = gk(n) + k(g) for all g ∈ G and n ∈ A, so k factors through G/A.
Moreover, k(g) = k(gg−1ng) = k(ng) = nk(g) + k(n) = nk(g), thus k has image in MA. Thus
k is the inflation of a principal crossed homomorphism, proving the exactness.
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The exact sequence in Theorem 2.8 is the inflation-restriction sequence. In fact, under certain
conditions, we have an inflation-restriction sequence on the higher cohomology groups.

Proposition 2.9. Let G be a group with normal subgroup A, and let M be a G-module. Suppose
that i ≥ 1, and that H j(A; M) is trivial for all 1 ≤ j ≤ i− 1, then the sequence

0 Hi(G/A; MA) Hi(G; M) Hi(A; M)Inf Res

is exact.

We will not give a proof of Proposition 2.9 in this write-up, and we will proceed to discuss
Galois cohomology, i.e. group cohomology on the profinite Galois group. Recall once more that
for some perfect field k with algebraic closure K, the Galois group G = Gal(K/k) is isomorphic
to an inverse limit

G ∼= lim
←−

Gal(L/k)

ranging over the finite Galois extensions L/k with the natural projections. This fact makes G a
profinite group, and the Krull topology is a topology on G where a basis for the neighborhood
at the identity is the collection of normal subgroups having finite index in G. Next, a topological
G-module is a topological abelian group M where the action G × M → M is continuous. By
restricting Ci(G; M) to the continuous functions f : Gi → M, we can check that all theorems
and lemmas we have proved so far still holds after slight modifications.

3 Kummer sequence and weak Mordell–Weil theorem

Let k be a perfect field with algebraic closure K. Fix an elliptic curve E over k. There is a well
known structure theorem for the elliptic curve group E(k), the Mordell–Weil theorem.

Proposition 3.1 (Mordell–Weil). The elliptic curve group E(k) is finitely generated.

Since E(k) is an abelian group, Mordell–Weil tells us that E(k) ∼= E(k)tors⊕Z⊕r where r ∈ N
is the rank of the elliptic curve and E(k)tors is a finite group, i.e. the torsion component. The
proof of this theorem consists of two parts. The first part is the weak Mordell–Weil theorem,
and the second part is an infinite descent argument using height functions [2]. We will not
discuss the second part, and we will focus on discussing the first part.

Proposition 3.2 (weak Mordell–Weil). The group E(k)/nE(k) is finite for all n ≥ 2.

To show the weak Mordell–Weil theorem, we first make the important observation that for
n ≥ 2, the following sequence of topological Gal(K/k)-modules

0 E(K)[n] E(K) E(K) 0n (?)

is exact. Next, we deduce an exact sequence of abelian groups from (?).

Lemma 3.3. For n ≥ 2, the sequnce of abelian groups

0 E(k)/nE(k) H1(Gal(K/k), E(K)[n]) H1(Gal(K/k), E(K))[n] 0

is exact.

Proof. By applying Theorem 2.7 to (?), we have a long exact sequence

0 E(k)[n] E(k) E(k)

H1(Gal(K/k); E(K)) H1(Gal(K/k); E(K)) H1(Gal(K/k); E(K)[n])

n

δ

n

where the rest of the long exact sequence is omitted as we don’t need them. We can then deduce
the short exact sequence by modifying this long exact sequence in the obvious way.
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If the abelian group H1(Gal(K/k), E(K)[n]) is finite then life is easy. Unfortunately, this is
not true in general. Thus, we aim to find a smaller group such that it also contains the image
of E(k)/nE(k). We observe that for a place ν of k, by considering E/kν, we obtain a diagram.

0 E(k)/nE(k) H1(Gal(K/k), E(K)[n]) H1(Gal(K/k), E(K))[n] 0

0 E(kν)/nE(kν) H1(Gal(Kν/kν), E(Kν)[n]) H1(Gal(Kν/kν), E(Kν))[n] 0

where Kν = kν. This motivates us the define the Selmer groups and Tate–Shafarevich groups.

Definition 3.4. For an elliptic curve E/k and n ≥ 2, define the n-Selmer group of E as

Seln(E/k) = Ker

(
H1(Gal(K/k); E(K)[n]) −→∏

ν

H1(Gal(Kν/kν); E(Kν))

)

and similarly, we define the group

Sha(E/k) = Ker

(
H1(Gal(K/k); E(K)) −→∏

ν

H1(Gal(Kν/kν); E(Kν))

)

as the Tate–Shafarevich group of E.

Lemma 3.5 (Kummer sequence). For n ≥ 2, the sequence of abelian groups

0 E(k)/nE(k) Seln(E/k) Sha(E/k)[n] 0

is exact.

Proof. We can deduce this from Lemma 3.3 with kernel-cokernel exact sequence.

In general, it is conjectured that Sha(E/k) is finite [2]. However, we do know for a fact that
the n-Selmer group for an elliptic curve is finite. Thus, we can finally finish the proof.

Theorem 3.6 (weak Mordell–Weil). The group E(k)/nE(k) is finite for all n ≥ 2.

Proof. By Lemma 3.5, E(k)/nE(k) injects into the n-Selmer group of E, which is finite.
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