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Introduction



In middle school, we learned the solutions of the quadratic equation

ax2 + bx + c = 0

where a, b, c ∈ C with a 6= 0, are given by the quadratic formula

λ1,2 =
−b ±

√
b2 − 4ac

2a

which only used field operations +,−,×, / and the square root
√
·.
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For the cubic and quartic equations

ax3 + bx2 + cx + d = 0

ax4 + bx3 + cx2 + dx + e = 0

where a, b, c , d , e ∈ C and a 6= 0, there are cubic and quartic formulas

using only field operations +,−,×, / and radicals
√
·, 3
√
·, and 4

√
·, albeit

much more complicated than the quadratic formula.
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The solution to ax3 + bx2 + cx + d = 0 is given by

x =
3

√√√√(−b3
27a3

+
bc

6a2
− d

2a

)
+

√(
−b3
27a3

+
bc

6a2
− d

2a

)2

+

(
c

3a
− b2

9a2

)3

+
3

√√√√(−b3
27a3

+
bc

6a2
− d

2a

)
−

√(
−b3
27a3

+
bc

6a2
− d

2a

)2

+

(
c

3a
− b2

9a2

)3

− b

3a
.

The solution to ax4 + bx3 + cx2 + dx + e = 0 is an even longer formula.
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Theorem 1.1 (Fundamental theorem of algebra)

For n > 0, the equation

zn + an−1z
n−1 + an−2z

n−2 + · · ·+ a1z + a0 = 0

where all ai ∈ C, has exactly n solutions in C counting multiplicity.
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Question: For n ≥ 5, is there a general formula for

zn + an−1z
n−1 + an−2z

n−2 + · · ·+ a1z + a0 = 0

on ai ∈ C using only (a finite number of) +,−,×, / and
√
·, 3
√
·, . . . ?
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Theorem 1.2 (Abel–Ruffini)

For n ≥ 5, there is no general formula for

zn + an−1z
n−1 + an−2z

n−2 + · · ·+ a1z + a0 = 0

on ai ∈ C using only (a finite number of) +,−,×, / and
√
·, 3
√
·, . . .
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The typical proof of this theorem uses heavy machinery from Galois

theory, but there is in fact a far more elementary but much less well

known proof due to V.I. Arnold, using nothing but basic knowledge of

complex numbers and topology.
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Reasons I prefer Arnold’s proof over the classical Galois theory proof.

(i) It is more elementary,

(ii) It is more visual,

(iii) It is a stronger result in some sense,

(iv) It helps you to really understand the classical Galois theory proof.
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Toy examples



Question: Can we distinguish between i and −i canonically?
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Remember there are two square roots of −1, either can be defined as i .

Way too often, we use notation C to mean “C with a choice of i”. This

is an abuse of notation that goes unnoticed due to its subtlety.

There is no “nice” or “canonical” order of roots for z2 = −1 or any

algebraic equation zn + an−1z
n−1 + an−2z

n−2 + · · ·+ a1z + a0 = 0.
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We pick an order for the roots of z2 = −1, say λ1 = i and λ2 = −i .

Consider the roots of z2 = e iθ. Observe how the they change as θ goes

from π to 3π continuously. Note that e iπ = e i(3π) = −1.

We see that e iθ moves along a loop based at −1. A loop based at p ∈ C
is just a continuous function γ : [0, 1]→ C s.t. γ(0) = γ(1) = p.
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What happened? The roots swap places!

In general, for zn + an−1z
n−1 + · · ·+ a1z + a0 = 0, pick an order of its

roots λ1, . . . , λn, then a permutation σ ∈ Sn of λi is induced by moving

each coefficient ai along some loop based at ai .

In this example of z2 = −1, we moved a0 along the loop −e iθ with θ

from π to 3π, inducing (1 2) on the roots λ1 = i and λ2 = −i .
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This proves there is no quadratic formula only using +,−,×, /. (Why?)
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In the previous example, the loop e iθ for θ from π to 3π is no longer a

loop under
√
·, since it induces a nontrivial permutation (1 2).

Question: What are the loops that remain loops under radicals, i.e.,

the permutation they induce on k
√
· is the identity for each k?
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Let γ a loop, then let γ−1 denote its inverse loop, i.e. the same loop

but going backwards. Let τ be a loop based at the same point as γ, then

let γ · τ denote their concatenated loop, i.e. the loop that goes along γ

and then goes along τ .

Question: Suppose that γ does not pass through 0, do you see why the

loop γ · γ−1 remains a loop under radicals?
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Let γ be a loop not passing through 0. Its winding index about 0 is an

integer: the number of times it wraps around the anticlockwise direction

about 0 subtracted by that of clockwise ones.

For experts: the winding index of γ about 0 is given by

Indγ(0) =
1

2πi

∮
γ

dz

z

It’s straightforward to see that γ remains a loop under radicals if it has

winding index 0 about 0, and γ · γ−1 has winding index 0 about 0.
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Figure 1: Winding index
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Theorem 2.3 (Vieta’s formulas)

If zn + an−1z
n−1 + · · ·+ a1z + a0 = 0 has solutions λ1, . . . , λn, then

an−k = (−1)k
∑

1≤i1<···<ik≤n

 k∏
j=1

λij


for k = 1, . . . , n.

For any permutation σ ∈ Sn of roots λ1, . . . , λn, we can move the roots

continuously so that they end up at the positions after the permutation.

By Vieta’s formulas, this produces loops of coefficients that induces σ,

and we can always make it so that the loops avoid passing through 0.
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Using these ideas, we show that any cubic formula must use nested

radicals, i.e. radicals inside radicals, such as 3

√
a0 +

√
a20 + a1.
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Question: Assume that a0, a1, a2 6= 0 and the equation has no repeated

solutions. If we could find three loops based at a0, a1, a2 not passing

through 0 that remain loops under radicals but induces a nontrivial

permutation on the roots λ1, λ2, λ3, what would that imply?
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Pick loops γ0, γ1, γ2 and loops τ0, τ1, τ2 based at a0, a1, a2 respectively,

such that none of γi or τi pass through 0 and γi and τi induce (1 2 3)

and (1 2) respectively on the roots. Define the commutator loop

[γi , τi ] = γi · τi · γ−1i · τ
−1
i

for each i . The commutators have winding index 0 about 0, so they

remain loops under radicals, but they induce a nontrivial permutation

[(1 2), (1 2 3)] = (1 2)−1(1 2 3)−1(1 2)(1 2 3) = (2 1 3)

which is the commutator permutation of (1 2) and (1 2 3).
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Figure 2: Commutator of loops `1 and `2
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The proof



Assume for sake of contradiction that there is a quintic formula.

Question: For some values ai 6= 0 for each i such that the equation has

no repeated roots, can we find loops based at each ai that remain loops

under the quintic formula, but induce a nontrivial permutation on the

roots λ1, λ2, λ3, λ4, λ5?
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One would naturally think about taking commutators, commutators of

commutators, commutators of commutators of commutators, and so on.
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Fact 3.4

degree # perm. # comm.
# comm.

of comm.

# comm.

of comm.

of comm.

n = 1 1 1 1 1

n = 2 2 1 1 1

n = 3 6 3 1 1

n = 4 24 12 4 1

n = 5 120 60 60 60

In degree 5, there are 60 permutations that are commutators of other

permutations, and the commutators of these elements are themselves.
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Finally, for the pièce de résistance, if the quintic formula has n levels of

nested radicals, we can always pick a nontrivial permutation expressed by

n levels of commutators by Fact 3.4. Using these permutations, we can

induce loops which remain loops under the formula (Why?). This means

that the quintic formula must have an infinite level of nested radicals,

k1

√
f1 +

k2

√
f2 +

k3

√
f3 + k4

√
· · ·

which is a contradiction!
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As an exercise, show that there is no general formula for any algebraic

equation of degree ≥ 5 using only field operations, radicals, or any

continuous complex function (e.g. sin z , cos z , ez).
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Rigorous formulation



Technical obstacles in the proof

(i) How do we rigorously define a general formula?

(ii) How do we rigorously define induced permutation on roots?
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A general formula for E ⊆ Cn is an ordered list of rational functions

(over Q) f1, . . . , fm of n, n + 1, . . . , n + m − 1 variables resp. and an

ordered list of k1, . . . , km ∈ Z+ s.t. for all (a0, . . . , an−1) ∈ E , if λ is a

root of an + an−1z
n−1 + · · ·+ a1z + a0 = 0, then there exists some

z1, . . . , zm ∈ C such that zm = λ and

zk11 = f1(a0, . . . , an−1)

zk22 = f2(a0, . . . , an−1, z1)

zk33 = f3(a0, . . . , an−1, z1, z2)

...

zkmm = fm(a0, . . . , an−1, z1, . . . , zm−1)

We say E is solvable by radicals if it has a general formula.
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An algebraic function y = f (x) is defined by

F (x , y) = yn + gn−1(x)yn−1 + · · ·+ g0(x) = 0

where gi are polynomials. Pick x = a such that F (a, y) has distinct roots

y = z1, . . . , zn. By implicit function theorem, exists open nbhd Ua of a

s.t. F (x , y) = 0 has distinct roots for x ∈ Ua, which defines functions

fa,1(x), . . . , fa,n(x) on Ua. WLOG, we can choose Ua as the common

convergence disc of the Taylor expansions of fa,i (x). A pair (fa,i ,Ua) is

called a chart or an analytic element.
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Given (fa,Ua) where fa defined on Ua has convergent Taylor series at a.

We prolong (fa,Ua) along a path γ (not passing through any singular

points), covered by finite number of Uai where ai ∈ γ which agree on

intersections, to obtain a chart (fb,Ub) at the end. This is called the

analytic continuation of (fa,Ua) along γ.
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Figure 3: Analytic continuation along a path
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Theorem 4.5 (Monodromy theorem)

If the paths γ1, γ2 (starting from a point a and ending at a point b) are

homotopic (we can continuously deform them to each other), then the

analytic continuation of (fa,Ua) along γ1 is the same the the analytic

continuation of (fa,Ua) along γ2.

This guarantees the uniqueness of the analytic continuation.

34



The union of all charts and all analytic continuations of them along all

possible paths is called the the Riemann surface of f , which is a natural

covering space of the complex plane minus the singular points.

Figure 4: Riemann surface of
√
x
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If γ is a loop in C (not passing through singular points), then the

analytic continuation of (fa,i ,Ua) along γ leads to some (fa,j ,Ua). The

permutation that arises this way is the induced permutation.

These permutations form the monodormy group of f , denoted Mon(f ),

which can be identified as the image of the natural map

π1(C \ {singular pts}, a)→ S{z1,...,zn}

known as the monodromy representation, where π1(X , a) is the group

of loops in X at a up to homotopy, called the fundamental group.
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Definition 4.6 (Commutator subgroup)

The commutator subgroup of a group G is

[G ,G ] = 〈[g , h] : g , h ∈ G 〉

with the operation inherited from G .

Definition 4.7 (Solvable groups)

A group G is solvable if the derived series of subgroups

G = G (0) D G (1) D G (2) D · · ·

where G (k) = [G (k−1),G (k−1)], terminates in the trivial group.
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The monodromy group of a typical algebraic function is Sn where n is the

degree, which is not solvable for n ≥ 5, since the derived series

S5 D A5 D A5 D A5 D A5 · · ·

contradicting the fact that a monodromy group of an algebraic function

expressed in radicals is solvable.

In fact Mon(f ) is isomorphic to a certain Galois group.
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Further topics



Galois theory and topology are related to each other in numerous ways.

(i) Each Galois group is naturally a topological group with the Krull

topology, which is discrete for finite Galois groups, and given by

Gal(K/k) = lim←−
K/L/k

L/k finite Galois

Gal(L/k)

for infinite ones. This topology is Hausdorff and compact.

(ii) The fundamental theorem of covering spaces gives an order

preserving correspondence between subgroups of fundamental groups

(up to conjugacy) and covering spaces, which is uncanily similar to

the fundamental theorem of Galois theory.
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Some further connections between Galois theory and topology:

(i) Topological Galois theory: Arnold’s idea was explored further by A.

Khovanskii and other mathematicians on problems regarding

solvability of differential equations, integrals, etc.

(ii) Grothendieck’s Galois theory: Inspired by the similarity of Galois

groups and fundamental groups, Grothendieck developed an

analogue of them called the étale fundamental group of schemes.

(iii) Grothendieck–Teichmüller theory: The Grothendieck–Teichmüller

conjecture states that the Grothendieck–Teichmüller group is

isomorphic to Gal(Q/Q). Grothendieck wanted “a purely topological

characterization of the Galois group, a purely arithmetical object.”

This relates to ideas like Belyi pairs and dessin d’enfant.
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Thank you for listening!
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