Adeles and Ideles

Yunhai Xiang
March 31, 2024

Contents
1 Introduction
2 Adeles and Ideles

3 Dirichlet Unit Theorem and Class Number



1 INTRODUCTION 2

1 Introduction

What is an adele? Besides a very famous English singer, an adele is also a mathematical
object we associate to global fields used widely in algebraic number theory. Pioneered
by Claude Chevalley and André Weil, adeles provide a natural language for many deep
theorems in class field theory (so deep you could say theyre rolling in the deep). We explain
the basics of adeles in this write-up with some applications. We begin by recalling some
basic facts from algebraic number theory. Fix K a number field (or more generally a global
tield, but we will focus on the number field case in this write-up).

Definition 1.1. An absolute value on a K is a function | - | : K — R> such that
(i) |x| =0iffx =0, forx € K
(i) |xyl = |xlyl, for x,y € K
(i) |[x+y| <|x|+|y|, forx,y € K
We say | - | is non-archimedean if it satisfies the ultrametric inequality
(iv) [x +y| < max{|x], |y|}, for x,y € K

and archimedean otherwise. Two absolute values | - |1 and | - |5 are said to be equivalent if
they induce the same topology on K, which happens iff | - |; = | - |5 for some & € R.

Theorem 1.2 (Ostrowski). Any nontrivial absolute value on K is equivalent to either an
archimedean absolute value induced by the usual absolute values on R or C via an em-
bedding, or a non-archimedean p-adic absolute value | - |, for a prime p C Ok, where

’x|p — cordp(x)
forafixed ¢ € (0,1) for x € K* and |0| = 0. The constant ¢ does not affect the equivalence

class of the absolute value, but it is often set to ¢ = 1/N(p) where N(p) = |Ok/p| is the
absolute norm of p, in which case we say it is normalized.

We call an equivalence class of absolute values on K a place of K. The archimedean
places are called the infinite places, and the non-archimedean places are called finite places.
Write K,, for the completion of K with respect to | - |,, and write O, for its ring of integers.

Theorem 1.3. Let K be the completion of K with respect to some nontrivial absolute value
| -], and L/K a finite extension of K, then L is the completion of a finite extension L/K
with respect to an absolute value that restricts to | - |. In particular, when | - | is non-
archimedean, the finite extensions of K, are L, /K, where L/K is a finite extension and
w C Op is a prime ideal such that w|v.

Adeles solves the technical problem of doing analysis on number fields over all the
completions K, simultaneously, and the way we achieve this is through a so-called re-
stricted direct product.
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2 Adeles and Ideles
Definition 2.1. Define the adele ring of K as the restricted direct product
AK = H(Kv/ Ov)

v

that is, Ak is the subring of [ ], K, where v ranges over all places of K, that consists of all
(xy)v € I1, Ky where x,, € O, for all but finitely many places v.

The adele ring Ak is a locally compact topological ring, since every K, is locally com-
pact. We would also like to consider the units A, but this is not a topological group
since the inverse map x — x~! need not be continuous. Therefore, we must modify the
topology on Af.

Definition 2.2. Define the idele group of K as the group of units in its adele ring, i.e.

Ix = Ag = {(xy)y € Ak :x, € K forallvand x, € O, for all but finitely many v}
endowed with the weakest topology that makes it a topological group, that is, we embed
Ix — Ag x Ax x> (x,x° 1)

and give Ik the subspace topology of its image in Ag X Ak.

The injection K — Ak restricts to inclusion K* — Ik, and K* is a discrete locally
compact subgroup of I, thus we can define the idele class group C(K) = Igx/K*. Let Zg
be fractional ideals in Ok, then there is a surjective morphism

Ix — Ik (ay)y = []p"®@
P

where v, (a) = vy(a,) where v is the place corresponding to | - |,. The composition K* —
Ix — Zk has image Pk the principle fractional ideals. Thus the ideles class group surjects
onto the ideal class group Cl(K) = Zg /Pk.

Definition 2.3. Define the idele norm || - || : Ix — RZ as
lafl =T Tlal,
v
where | - |, is the normalized absolute value, and define the 1-idele group
I =Ker(|| - ) = {a € Ig : [la]| =1}

as a subgroup of Ik.

Lemma 2.4. Let L/K be a finite extension, v a place of K, and w a place of L where w|v,
then we have

|x|w = |Nr,/k, (%) |v
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Proof. Assume w.l.o.g. that [L : K] > 1. If v is archimedean then L, = C and K, = R,
so |NL,/k, (*)|v = [Ne¢/r(¥)|R = xX = |x|& = |x|w. Assume v is non-archimedean. Let
mty and 71, be the uniformizers of K, and L, respectively. Let f be the inertia degree of

Lo /K,. We have x = ﬂc‘ﬁ(x) w.Lo.g. Since
[Nz, (0l = 7 = Tkl ~f
where k, is the residue field of K,, we have [N}k, (x)|, = |kV]_‘”(x)f. Thus
¥l = [ka| ™) = k|0 = |NL /k, (0)]
where k,, is the residue field for L,,. O

Lemma 2.5. Let L/K a finite extension then for v a prime of K, we have

[Tlxlo = INL/k(2)]v

wlv
forx € L*.

Proof. We note that L @ K, = HZJW L,. To see this, let L = K(«) = K|x]/ f(x) for primi-
tive element &« € L with minimal polynomial f. Suppose f factors in K, [x] as irreducibles

f(x) = fi(x) - fe(x). Then,

oQ

L ook Ko = K(&) 0k Ko = Ko[x)/ £6) 2= [ [ Kol /() = [ [ L

i=1 i=1

for finite extensions L;/K,. By Theorem 1.3 and Hensel’s lemma and Remark 8.3 in Milne
[1], the L;’s are in fact L, for each w|v, therefore L @k K, = Hw‘y L.,. Therefore, we have

Np/k(x) = ITop Ni,/k, (%), thus

INL/k(®) v =T ] INL, sk () [v =T ] 1%]w
wlv

wlv
by Lemma 2.4. O

Theorem 2.6 (Artin’s Product Formula). We have

Il =] Tlxlv =1

v
for all x € K*. In other words, there is canonical inclusion K* — l[}<.

Proof. We first prove this for K = Q. Letx = a/b € Q fora,b € Z. Since |x|, = 1 unless p
divides one of a, b, the product is finite. The map || - || : Q* — RZ, is a homomorphism,
so it suffice to check that || — 1|| = 1 and ||p|| = 1 for all prime p. The first is obvious,
and for the second, note that |p|, = 1/p, |pl = p, and |p|; = 1 when g # p is prime.
Next, by Lemma 2.5, to prove the case for a number field L/Q, it suffice to show that
[T, INL/o(x)|y = 1for x € L*, which we have already shown. O
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Lemma 2.7. The 1-idele group I}, inherits the same topology regardless whether we view
it in Ix (where it is a closed subgroup) or Ak (where it is closed).

Proof. First we show 1L is closed in Ag. To this end, we seek an open neighborhood N
of each x € Ak \ I disjoint from I}. Choose x € (x,) € Ag \ IL. Let S be a finite set of
places that includes all archimedean places such that x, € O, forallv € S.

Assume x,, = 0 for some 1. Consider N =[], N, where N, = O, forv ¢ SU {1y},
N, is a compact neighborhood of x, in K, for v € S with v # vy, and N,, a very small
neighborhood of 0 € K,,. By very small, we mean small enough so that any idele in N
has idelic norm very close to 0 and in particular smaller than 1 (note that we can do this
because any idele in N has idelic norm bounded by product of local norms along places
in S and vp), so that N is disjoint from I1.

Next, assume x, € K for all v, since |x,|, < 1 for all but finitely many v, the in-
finite product ||x|| = IT, |x|, has partial products eventually forming a monotonically
decreasing sequence, and hence this product makes sense as a nonnegative real number.
If [|x|| < 1, then let S be a finite set of places containing all archimedean places and such
that x, € O, forallv ¢ S, and [],cs |*v|v < 1. Now, we can apply the same argument
as the preceeding paragraph: we take N, = O, for v ¢ S and choose N, a very small
neighborhood for x, for v € S. If instead the product P = ||x|| > 1. By the convergence
of this product, there is a finite set of places S including all archimedean places, such that
xy, € Oy forallv ¢ S, and % > qlu for v ¢ S (so that |{y|, < 1 implies ||y < %), and
1 <Tlyes |xv|v < 2P.

Hence by choosing N, = O, for v € S, and choosing N, very small for v € S, we have
if ¢ € N,and ||, < 1forsome v ¢ S, then

2P
HCH ::Ii[|€vh/'1i[|§vb <:§f;::1

veS V¢S

and if |&,|, > 1forallv ¢ S then ||&|| > 1, so it is also disjoint from T%.

Next, we show I}, < A is a homeomorphism onto its closed image. It suffice to show
that every N C I} around a point x contains the intersection of I}, with a neighborhood
of x in Ag. We may assume that x = 1 since multiplication by 1/x is a an automorphism
that carries I}, onto itself. By the description of the neighborhood basis of 1 € Ix, we
can shrink Nas N =[], N, N II}< with each N, a small disc centred at 1 in K, for all v
in a finite set of places S containing all archimedean places, and N, = O/ forallv € S.
By shrinking N,, we can ensure that [],cg |v]y < 2 forall { € [T, Ny C Ik, yet for ¢ €
[T, Ny we have ||¢]| = I[T,es |Gv|v since N, = O, forv ¢ S. Let W be the neighborhood
[Tyes Ny X [Tygs Ov of 1in Ak, thenany ¢ € WN I} satisfies

1=gl =TTIelv-TTlelv <2TTI&ul

vVeS vES v¢ES

Since |¢y|y < 1forv ¢ S, 1 < 2|Cyly, forvg & S,s01 > || > 1/2 > 1/gy,, so
Cp € OF = NysoWnIy CT,N, NI =N. 0
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Theorem 2.8 (Adelic Minkowski’s theorem). For ¢ € Ik, define the closed subset

X@ = {(xv) € Ax : |xv|1/ < |‘:1/|1/} C Ak
then there eixsts C > 0 such that if ||¢|| > C then Xz N K has a nonzero element.
Lemma 2.9. The quotient I} /K* is compact.

Proof. By Lemma 2.7, the topology on I} is induced by Ag. Thus for any compact W C
Ak, we have W N1} is compact. It suffice to find compact W for which the projection
WNIL — IL/K* is surjective. Choose C > 0 as in Theorem 2.8 and ¢ € I such that
I¢]] > C, define

W={xeAx:|x|, <|C|}

For any 6 € I, the idele §~!Z has idelic norm ||¢]| > C. By Theorem 2.8, there exists
nonzero a € K such that |a|, < [671&,|, for all v, and hence a6 € W. Since a € K* C I,
so af € W N1 is a representative of the class of 6 in I} /K*. O

3 Dirichlet Unit Theorem and Class Number

The machinery of adeles has application in proving several finiteness results. Let S be a
set of places that includes all archimedean places, then the S-adele ring Ak s =[], 5 Ky X
[1,¢s Oy is an open subring of A. The S-integers O is the set of a € K such that a is
v-integral for v € S.

Theorem 3.1. The following are equivalent
1. IL/K* is compact
2. Cl(Ok;s) is finite and Oy ; has rank |S| — 1.
Proof. See Conrad [2]. H
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