Adeles and Ideles

Yunhai Xiang

March 31, 2024

Contents

1	Introduction	2
2	Adeles and Ideles	3
3	Dirichlet Unit Theorem and Class Number	6

1 Introduction

What is an *adele*? Besides a very famous English singer, an adele is also a mathematical object we associate to global fields used widely in algebraic number theory. Pioneered by Claude Chevalley and André Weil, adeles provide a natural language for many deep theorems in class field theory (so deep you could say they're *rolling in the deep*). We explain the basics of adeles in this write-up with some applications. We begin by recalling some basic facts from algebraic number theory. Fix *K* a number field (or more generally a global field, but we will focus on the number field case in this write-up).

Definition 1.1. An *absolute value* on a *K* is a function $|\cdot| : K \to \mathbb{R}_{\geq 0}$ such that

- (i) |x| = 0 iff x = 0, for $x \in K$
- (ii) |xy| = |x||y|, for $x, y \in K$
- (iii) $|x + y| \le |x| + |y|$, for $x, y \in K$

We say $|\cdot|$ is *non-archimedean* if it satisfies the ultrametric inequality

(iv) $|x + y| \le \max\{|x|, |y|\}$, for $x, y \in K$

and *archimedean* otherwise. Two absolute values $|\cdot|_1$ and $|\cdot|_2$ are said to be *equivalent* if they induce the same topology on *K*, which happens iff $|\cdot|_1 = |\cdot|_2^{\alpha}$ for some $\alpha \in \mathbb{R}_{>0}$.

Theorem 1.2 (Ostrowski). Any nontrivial absolute value on *K* is equivalent to either an archimedean absolute value induced by the usual absolute values on \mathbb{R} or \mathbb{C} via an embedding, or a non-archimedean \mathfrak{p} -*adic absolute value* $|\cdot|_{\mathfrak{p}}$ for a prime $\mathfrak{p} \subseteq \mathcal{O}_K$, where

$$|x|_{\mathfrak{p}} = c^{\operatorname{ord}_{\mathfrak{p}}(x)}$$

for a fixed $c \in (0, 1)$ for $x \in K^{\times}$ and |0| = 0. The constant c does not affect the equivalence class of the absolute value, but it is often set to $c = 1/N(\mathfrak{p})$ where $N(\mathfrak{p}) = |\mathcal{O}_K/\mathfrak{p}|$ is the absolute norm of \mathfrak{p} , in which case we say it is *normalized*.

We call an equivalence class of absolute values on *K* a *place* of *K*. The archimedean places are called the *infinite places*, and the non-archimedean places are called *finite places*. Write K_{ν} for the completion of *K* with respect to $|\cdot|_{\nu}$, and write \mathcal{O}_{ν} for its ring of integers.

Theorem 1.3. Let \widehat{K} be the completion of K with respect to some nontrivial absolute value $|\cdot|$, and \widehat{L}/\widehat{K} a finite extension of \widehat{K} , then \widehat{L} is the completion of a finite extension L/K with respect to an absolute value that restricts to $|\cdot|$. In particular, when $|\cdot|$ is non-archimedean, the finite extensions of K_{ν} are L_{ω}/K_{ν} where L/K is a finite extension and $\omega \subseteq \mathcal{O}_L$ is a prime ideal such that $\omega|\nu$.

Adeles solves the technical problem of doing analysis on number fields over all the completions K_{ν} simultaneously, and the way we achieve this is through a so-called restricted direct product.

2 Adeles and Ideles

Definition 2.1. Define the *adele ring* of *K* as the restricted direct product

$$\mathbb{A}_K = \prod_{\nu} (K_{\nu}, \mathcal{O}_{\nu})$$

that is, \mathbb{A}_K is the subring of $\prod_{\nu} K_{\nu}$, where ν ranges over all places of K, that consists of all $(x_{\nu})_{\nu} \in \prod_{\nu} K_{\nu}$ where $x_{\nu} \in \mathcal{O}_{\nu}$ for all but finitely many places ν .

The adele ring \mathbb{A}_K is a locally compact topological ring, since every K_v is locally compact. We would also like to consider the units \mathbb{A}_K^{\times} , but this is not a topological group since the inverse map $x \mapsto x^{-1}$ need not be continuous. Therefore, we must modify the topology on \mathbb{A}_K^{\times} .

Definition 2.2. Define the *idele group* of *K* as the group of units in its adele ring, i.e.

$$\mathbb{I}_K = \mathbb{A}_K^{\times} = \{(x_{\nu})_{\nu} \in \mathbb{A}_K : x_{\nu} \in K_{\nu}^{\times} \text{ for all } \nu \text{ and } x_{\nu} \in \mathcal{O}_{\nu}^{\times} \text{ for all but finitely many } \nu\}$$

endowed with the weakest topology that makes it a topological group, that is, we embed

$$\mathbb{I}_K \to \mathbb{A}_K \times \mathbb{A}_K \quad x \mapsto (x, x^{-1})$$

and give \mathbb{I}_K the subspace topology of its image in $\mathbb{A}_K \times \mathbb{A}_K$.

The injection $K \hookrightarrow \mathbb{A}_K$ restricts to inclusion $K^{\times} \hookrightarrow \mathbb{I}_K$, and K^{\times} is a discrete locally compact subgroup of \mathbb{I}_K , thus we can define the *idele class group* $C(K) = \mathbb{I}_K/K^{\times}$. Let \mathcal{I}_K be fractional ideals in \mathcal{O}_K , then there is a surjective morphism

$$\mathbb{I}_K \to \mathcal{I}_K \quad (a_\nu)_\nu \mapsto \prod_{\mathfrak{p}} \mathfrak{p}^{\nu_{\mathfrak{p}}(a)}$$

where $\nu_{\mathfrak{p}}(a) = \nu_{\mathfrak{p}}(a_{\nu})$ where ν is the place corresponding to $|\cdot|_{\mathfrak{p}}$. The composition $K^{\times} \hookrightarrow \mathbb{I}_{K} \to \mathcal{I}_{K}$ has image \mathcal{P}_{K} the principle fractional ideals. Thus the ideles class group surjects onto the ideal class group $Cl(K) = \mathcal{I}_{K}/\mathcal{P}_{K}$.

Definition 2.3. Define the idele norm $\|\cdot\| : \mathbb{I}_K \to \mathbb{R}_{>0}^{\times}$ as

$$\|a\|=\prod_{\nu}|a|_{\nu}$$

where $|\cdot|_{\nu}$ is the normalized absolute value, and define the 1-idele group

$$\mathbb{I}_K^1 = \operatorname{Ker}(\|\cdot\|) = \{a \in \mathbb{I}_K : \|a\| = 1\}$$

as a subgroup of \mathbb{I}_K .

Lemma 2.4. Let *L*/*K* be a finite extension, ν a place of *K*, and ω a place of *L* where $\omega | \nu$, then we have

$$|x|_{\omega} = |N_{L_{\omega}/K_{\nu}}(x)|_{\nu}$$

Proof. Assume w.l.o.g. that [L : K] > 1. If ν is archimedean then $L_{\omega} = \mathbb{C}$ and $K_{\nu} = \mathbb{R}$, so $|N_{L_{\omega}/K_{\nu}}(x)|_{\nu} = |N_{\mathbb{C}/\mathbb{R}}(x)|_{\mathbb{R}} = x\overline{x} = |x|_{\mathbb{C}}^{2} = |x|_{\omega}$. Assume ν is non-archimedean. Let π_{ν} and π_{ω} be the uniformizers of K_{ν} and L_{ω} respectively. Let f be the inertia degree of L_{ω}/K_{ν} . We have $x = \pi_{\omega}^{\omega(x)}$ w.l.o.g. Since

$$|N_{L_{\omega}/K_{\nu}}(\pi_{\omega})|_{\nu} = |\pi_{\nu}^{f}|_{\nu} = |k_{\nu}|^{-f}$$

where k_{ν} is the residue field of K_{ν} , we have $|N_{L_{\omega}/K_{\nu}}(x)|_{\nu} = |k_{\nu}|^{-\omega(x)f}$. Thus

$$|x|_{\omega} = |k_{\omega}|^{-\omega(x)} = |k_{\nu}|^{-\omega(x)f} = |N_{L_{\omega}/K_{\nu}}(x)|_{\nu}$$

where k_{ω} is the residue field for L_{ω} .

Lemma 2.5. Let L/K a finite extension then for ν a prime of K, we have

$$\prod_{\omega|\nu} |x|_{\omega} = |N_{L/K}(x)|_{\nu}$$

for $x \in L^{\times}$.

Proof. We note that $L \otimes_K K_{\nu} \cong \prod_{\omega|\nu}^n L_{\omega}$. To see this, let $L = K(\alpha) = K[x]/f(x)$ for primitive element $\alpha \in L$ with minimal polynomial f. Suppose f factors in $K_{\nu}[x]$ as irreducibles $f(x) = f_1(x) \cdots f_g(x)$. Then,

$$L \otimes_K K_{\nu} = K(\alpha) \otimes_K K_{\nu} \cong K_{\nu}[x] / f(x) \cong \prod_{i=1}^g K_{\nu}[x] / f_i(x) \cong \prod_{i=1}^g L_i$$

for finite extensions L_i/K_v . By Theorem 1.3 and Hensel's lemma and Remark 8.3 in Milne [1], the L_i 's are in fact L_ω for each $\omega|\nu$, therefore $L \otimes_K K_\nu \cong \prod_{\omega|\nu} L_\omega$. Therefore, we have $N_{L/K}(x) = \prod_{\omega|\nu} N_{L_\omega/K_\nu}(x)$, thus

$$|N_{L/K}(x)|_{\nu} = \prod_{\omega|\nu} |N_{L_{\omega}/K_{\nu}}(x)|_{\nu} = \prod_{\omega|\nu} |x|_{\omega}$$

by Lemma 2.4.

Theorem 2.6 (Artin's Product Formula). We have

$$\|x\|=\prod_{\nu}|x|_{\nu}=1$$

for all $x \in K^{\times}$. In other words, there is canonical inclusion $K^{\times} \hookrightarrow \mathbb{I}^{1}_{K}$.

Proof. We first prove this for $K = \mathbb{Q}$. Let $x = a/b \in \mathbb{Q}$ for $a, b \in \mathbb{Z}$. Since $|x|_p = 1$ unless p divides one of a, b, the product is finite. The map $\|\cdot\| : \mathbb{Q}^{\times} \to \mathbb{R}_{>0}^{\times}$ is a homomorphism, so it suffice to check that $\|-1\| = 1$ and $\|p\| = 1$ for all prime p. The first is obvious, and for the second, note that $|p|_p = 1/p$, $|p|_{\infty} = p$, and $|p|_q = 1$ when $q \neq p$ is prime. Next, by Lemma 2.5, to prove the case for a number field L/\mathbb{Q} , it suffice to show that $\prod_{\nu} |N_{L/\mathbb{Q}}(x)|_{\nu} = 1$ for $x \in L^{\times}$, which we have already shown.

Lemma 2.7. The 1-idele group \mathbb{I}_{K}^{1} inherits the same topology regardless whether we view it in \mathbb{I}_{K} (where it is a closed subgroup) or \mathbb{A}_{K} (where it is closed).

Proof. First we show \mathbb{I}_K^1 is closed in \mathbb{A}_K . To this end, we seek an open neighborhood N of each $x \in \mathbb{A}_K \setminus \mathbb{I}_K^1$ disjoint from \mathbb{I}_K^1 . Choose $x \in (x_\nu) \in \mathbb{A}_K \setminus \mathbb{I}_K^1$. Let S be a finite set of places that includes all archimedean places such that $x_\nu \in \mathcal{O}_\nu$ for all $\nu \notin S$.

Assume $x_{\nu_0} = 0$ for some ν_0 . Consider $N = \prod_{\nu} N_{\nu}$ where $N_{\nu} = \mathcal{O}_{\nu}$ for $\nu \notin S \cup \{\nu_0\}$, N_{ν} is a compact neighborhood of x_{ν} in K_{ν} for $\nu \in S$ with $\nu \neq \nu_0$, and N_{ν_0} a very small neighborhood of $0 \in K_{\nu_0}$. By very small, we mean small enough so that any idele in N has idelic norm very close to 0 and in particular smaller than 1 (note that we can do this because any idele in N has idelic norm bounded by product of local norms along places in S and ν_0), so that N is disjoint from \mathbb{I}_K^1 .

Next, assume $x_{\nu} \in K_{\nu}^{\times}$ for all ν , since $|x_{\nu}|_{\nu} \leq 1$ for all but finitely many ν , the infinite product $||x|| = \prod_{\nu} |x|_{\nu}$ has partial products eventually forming a monotonically decreasing sequence, and hence this product makes sense as a nonnegative real number. If ||x|| < 1, then let *S* be a finite set of places containing all archimedean places and such that $x_{\nu} \in \mathcal{O}_{\nu}$ for all $\nu \notin S$, and $\prod_{\nu \in S} |x_{\nu}|_{\nu} < 1$. Now, we can apply the same argument as the preceeding paragraph: we take $N_{\nu} = \mathcal{O}_{\nu}$ for $\nu \notin S$ and choose N_{ν} a very small neighborhood for x_{ν} for $\nu \in S$. If instead the product P = ||x|| > 1. By the convergence of this product, there is a finite set of places *S* including all archimedean places, such that $x_{\nu} \in \mathcal{O}_{\nu}$ for all $\nu \notin S$, and $\frac{1}{2P} > \frac{1}{q_{\nu}}$ for $\nu \notin S$ (so that $|\xi_{\nu}|_{\nu} < 1$ implies $|\xi_{\nu}|_{\nu} < \frac{1}{2P}$), and $1 < \prod_{\nu \in S} |x_{\nu}|_{\nu} < 2P$.

Hence by choosing $N_{\nu} = \mathcal{O}_{\nu}$ for $\nu \notin S$, and choosing N_{ν} very small for $\nu \in S$, we have if $\xi \in N$, and $|\xi_{\nu}|_{\nu} < 1$ for some $\nu \notin S$, then

$$\|\xi\| = \prod_{\nu \in S} |\xi_{\nu}|_{\nu} \cdot \prod_{\nu \notin S} |\xi_{\nu}|_{\nu} < \frac{2P}{2P} = 1$$

and if $|\xi_{\nu}|_{\nu} \ge 1$ for all $\nu \notin S$ then $||\xi|| > 1$, so it is also disjoint from \mathbb{I}_{K}^{1} .

Next, we show $\mathbb{I}_K^1 \hookrightarrow \mathbb{A}_K$ is a homeomorphism onto its closed image. It suffice to show that every $N \subseteq \mathbb{I}_K^1$ around a point x contains the intersection of \mathbb{I}_K^1 with a neighborhood of x in \mathbb{A}_K . We may assume that x = 1 since multiplication by 1/x is a an automorphism that carries \mathbb{I}_K^1 onto itself. By the description of the neighborhood basis of $1 \in I_K$, we can shrink N as $N = \prod_{\nu} N_{\nu} \cap \mathbb{I}_K^1$ with each N_{ν} a small disc centred at 1 in K_{ν}^{\times} for all ν in a finite set of places S containing all archimedean places, and $N_{\nu} = \mathcal{O}_{\nu}^{\times}$ for all $\nu \notin S$. By shrinking N_{ν} , we can ensure that $\prod_{\nu \in S} |\xi_{\nu}|_{\nu} < 2$ for all $\xi \in \prod_{\nu} N_{\nu} \subseteq \mathbb{I}_K$, yet for $\xi \in$ $\prod_{\nu} N_{\nu}$ we have $\|\xi\| = \prod_{\nu \in S} |\xi_{\nu}|_{\nu}$ since $N_{\nu} = \mathcal{O}_{\nu}^{\times}$ for $\nu \notin S$. Let W be the neighborhood $\prod_{\nu \in S} N_{\nu} \times \prod_{\nu \notin S} \mathcal{O}_{\nu}$ of 1 in \mathbb{A}_K , then any $\xi \in W \cap \mathbb{I}_K^1$ satisfies

$$1 = \|\xi\| = \prod_{\nu \in S} |\xi_\nu|_\nu \cdot \prod_{\nu \notin S} |\xi_\nu|_\nu < 2 \prod_{\nu \notin S} |\xi_\nu|_\nu$$

Since $|\xi_{\nu}|_{\nu} \leq 1$ for $\nu \notin S$, $1 < 2|\xi_{\nu_0}|_{\nu_0}$ for $\nu_0 \notin S$, so $1 \geq |\xi_{\nu_0}| > 1/2 \geq 1/q_{\nu_0}$, so $\xi_{\nu_0} \in \mathcal{O}_{\nu_0}^{\times} = N_{\nu_0}$ so $W \cap \mathbb{I}_K^1 \subseteq \prod_{\nu} N_{\nu} \cap \mathbb{I}_K^1 = N$.

Theorem 2.8 (Adelic Minkowski's theorem). For $\xi \in \mathbb{I}_K$, define the closed subset

$$X_{\xi} = \{(x_{\nu}) \in \mathbb{A}_K : |x_{\nu}|_{\nu} \le |\xi_{\nu}|_{\nu}\} \subseteq \mathbb{A}_K$$

then there eixsts C > 0 such that if $\|\xi\| > C$ then $X_{\xi} \cap K$ has a nonzero element.

Lemma 2.9. The quotient $\mathbb{I}_{K}^{1}/K^{\times}$ is compact.

Proof. By Lemma 2.7, the topology on \mathbb{I}_{K}^{1} is induced by \mathbb{A}_{K} . Thus for any compact $W \subseteq \mathbb{A}_{K}$, we have $W \cap \mathbb{I}_{K}^{1}$ is compact. It suffice to find compact W for which the projection $W \cap \mathbb{I}_{K}^{1} \to \mathbb{I}_{K}^{1}/K^{\times}$ is surjective. Choose C > 0 as in Theorem 2.8 and $\xi \in \mathbb{I}_{K}$ such that $\|\xi\| > C$, define

$$W = \{x \in \mathbb{A}_K : |x_\nu|_\nu \le |\xi_\nu|_\nu\}$$

For any $\theta \in \mathbb{I}_{K}^{1}$, the idele $\theta^{-1}\xi$ has idelic norm $\|\xi\| > C$. By Theorem 2.8, there exists nonzero $a \in K$ such that $|a|_{\nu} \leq |\theta^{-1}\xi_{\nu}|_{\nu}$ for all ν , and hence $a\theta \in W$. Since $a \in K^{\times} \subseteq \mathbb{I}_{K}^{1}$, so $a\theta \in W \cap \mathbb{I}_{K}^{1}$ is a representative of the class of θ in $\mathbb{I}_{K}^{1}/K^{\times}$.

3 Dirichlet Unit Theorem and Class Number

The machinery of adeles has application in proving several finiteness results. Let *S* be a set of places that includes all archimedean places, then the *S*-adele ring $\mathbb{A}_{K,S} = \prod_{\nu \in S} K_{\nu} \times \prod_{\nu \notin S} \mathcal{O}_{\nu}$ is an open subring of \mathbb{A}_{K} . The *S*-integers $\mathcal{O}_{K,S}$ is the set of $a \in K$ such that a is ν -integral for $\nu \notin S$.

Theorem 3.1. The following are equivalent

```
1. \mathbb{I}^1_K/K^{\times} is compact
```

2. $\operatorname{Cl}(\mathcal{O}_{K,S})$ is finite and $\mathcal{O}_{K,S}^{\times}$ has rank |S| - 1.

Proof. See Conrad [2].

References

- [1] J. S. Milne, Algebraic Number Theory.
- [2] B. Conrad, Algebraic Number Theory.
- [3] J. Neukirch, Algebraic Number Theory.
- [4] A. Sutherland, 18.785 Number Theory I.