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1 Introduction

What is an adele? Besides a very famous English singer, an adele is also a mathematical
object we associate to global fields used widely in algebraic number theory. Pioneered
by Claude Chevalley and André Weil, adeles provide a natural language for many deep
theorems in class field theory (so deep you could say they’re rolling in the deep). We explain
the basics of adeles in this write-up with some applications. We begin by recalling some
basic facts from algebraic number theory. Fix K a number field (or more generally a global
field, but we will focus on the number field case in this write-up).

Definition 1.1. An absolute value on a K is a function | · | : K → R≥0 such that

(i) |x| = 0 iff x = 0, for x ∈ K

(ii) |xy| = |x||y|, for x, y ∈ K

(iii) |x + y| ≤ |x|+ |y|, for x, y ∈ K

We say | · | is non-archimedean if it satisfies the ultrametric inequality

(iv) |x + y| ≤ max{|x|, |y|}, for x, y ∈ K

and archimedean otherwise. Two absolute values | · |1 and | · |2 are said to be equivalent if
they induce the same topology on K, which happens iff | · |1 = | · |α2 for some α ∈ R>0.

Theorem 1.2 (Ostrowski). Any nontrivial absolute value on K is equivalent to either an
archimedean absolute value induced by the usual absolute values on R or C via an em-
bedding, or a non-archimedean p-adic absolute value | · |p for a prime p ⊆ OK, where

|x|p = cordp(x)

for a fixed c ∈ (0, 1) for x ∈ K× and |0| = 0. The constant c does not affect the equivalence
class of the absolute value, but it is often set to c = 1/N(p) where N(p) = |OK/p| is the
absolute norm of p, in which case we say it is normalized.

We call an equivalence class of absolute values on K a place of K. The archimedean
places are called the infinite places, and the non-archimedean places are called finite places.
Write Kν for the completion of K with respect to | · |ν, and write Oν for its ring of integers.

Theorem 1.3. Let K̂ be the completion of K with respect to some nontrivial absolute value
| · |, and L̂/K̂ a finite extension of K̂, then L̂ is the completion of a finite extension L/K
with respect to an absolute value that restricts to | · |. In particular, when | · | is non-
archimedean, the finite extensions of Kν are Lω/Kν where L/K is a finite extension and
ω ⊆ OL is a prime ideal such that ω|ν.

Adeles solves the technical problem of doing analysis on number fields over all the
completions Kν simultaneously, and the way we achieve this is through a so-called re-
stricted direct product.
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2 Adeles and Ideles

Definition 2.1. Define the adele ring of K as the restricted direct product

AK = ∏
ν

(Kν,Oν)

that is, AK is the subring of ∏ν Kν, where ν ranges over all places of K, that consists of all
(xν)ν ∈ ∏ν Kν where xν ∈ Oν for all but finitely many places ν.

The adele ring AK is a locally compact topological ring, since every Kν is locally com-
pact. We would also like to consider the units A×

K , but this is not a topological group
since the inverse map x 7→ x−1 need not be continuous. Therefore, we must modify the
topology on A×

K .

Definition 2.2. Define the idele group of K as the group of units in its adele ring, i.e.

IK = A×
K = {(xν)ν ∈ AK : xν ∈ K×

ν for all ν and xν ∈ O×
ν for all but finitely many ν}

endowed with the weakest topology that makes it a topological group, that is, we embed

IK → AK × AK x 7→ (x, x−1)

and give IK the subspace topology of its image in AK × AK.

The injection K ↪→ AK restricts to inclusion K× ↪→ IK, and K× is a discrete locally
compact subgroup of IK, thus we can define the idele class group C(K) = IK/K×. Let IK
be fractional ideals in OK, then there is a surjective morphism

IK → IK (aν)ν 7→ ∏
p

pνp(a)

where νp(a) = νp(aν) where ν is the place corresponding to | · |p. The composition K× ↪→
IK → IK has image PK the principle fractional ideals. Thus the ideles class group surjects
onto the ideal class group Cl(K) = IK/PK.

Definition 2.3. Define the idele norm ∥ · ∥ : IK → R×
>0 as

∥a∥ = ∏
ν

|a|ν

where | · |ν is the normalized absolute value, and define the 1-idele group

I1
K = Ker(∥ · ∥) = {a ∈ IK : ∥a∥ = 1}

as a subgroup of IK.

Lemma 2.4. Let L/K be a finite extension, ν a place of K, and ω a place of L where ω|ν,
then we have

|x|ω = |NLω/Kν
(x)|ν
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Proof. Assume w.l.o.g. that [L : K] > 1. If ν is archimedean then Lω = C and Kν = R,
so |NLω/Kν

(x)|ν = |NC/R(x)|R = xx = |x|2C = |x|ω. Assume ν is non-archimedean. Let
πν and πω be the uniformizers of Kν and Lω respectively. Let f be the inertia degree of
Lω/Kν. We have x = π

ω(x)
ω w.l.o.g. Since

|NLω/Kν
(πω)|ν = |π f

ν |ν = |kν|− f

where kν is the residue field of Kν, we have |NLω/Kν
(x)|ν = |kν|−ω(x) f . Thus

|x|ω = |kω|−ω(x) = |kν|−ω(x) f = |NLω/Kν
(x)|ν

where kω is the residue field for Lω.

Lemma 2.5. Let L/K a finite extension then for ν a prime of K, we have

∏
ω|ν

|x|ω = |NL/K(x)|ν

for x ∈ L×.

Proof. We note that L ⊗K Kν
∼= ∏n

ω|ν Lω. To see this, let L = K(α) = K[x]/ f (x) for primi-
tive element α ∈ L with minimal polynomial f . Suppose f factors in Kν[x] as irreducibles
f (x) = f1(x) · · · fg(x). Then,

L ⊗K Kν = K(α)⊗K Kν
∼= Kν[x]/ f (x) ∼=

g

∏
i=1

Kν[x]/ fi(x) ∼=
g

∏
i=1

Li

for finite extensions Li/Kν. By Theorem 1.3 and Hensel’s lemma and Remark 8.3 in Milne
[1], the Li’s are in fact Lω for each ω|ν, therefore L ⊗K Kν

∼= ∏ω|ν Lω. Therefore, we have
NL/K(x) = ∏ω|ν NLω/Kν

(x), thus

|NL/K(x)|ν = ∏
ω|ν

|NLω/Kν
(x)|ν = ∏

ω|ν
|x|ω

by Lemma 2.4.

Theorem 2.6 (Artin’s Product Formula). We have

∥x∥ = ∏
ν

|x|ν = 1

for all x ∈ K×. In other words, there is canonical inclusion K× ↪→ I1
K.

Proof. We first prove this for K = Q. Let x = a/b ∈ Q for a, b ∈ Z. Since |x|p = 1 unless p
divides one of a, b, the product is finite. The map ∥ · ∥ : Q× → R×

>0 is a homomorphism,
so it suffice to check that ∥ − 1∥ = 1 and ∥p∥ = 1 for all prime p. The first is obvious,
and for the second, note that |p|p = 1/p, |p|∞ = p, and |p|q = 1 when q ̸= p is prime.
Next, by Lemma 2.5, to prove the case for a number field L/Q, it suffice to show that
∏ν |NL/Q(x)|ν = 1 for x ∈ L×, which we have already shown.
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Lemma 2.7. The 1-idele group I1
K inherits the same topology regardless whether we view

it in IK (where it is a closed subgroup) or AK (where it is closed).

Proof. First we show I1
K is closed in AK. To this end, we seek an open neighborhood N

of each x ∈ AK \ I1
K disjoint from I1

K. Choose x ∈ (xν) ∈ AK \ I1
K. Let S be a finite set of

places that includes all archimedean places such that xν ∈ Oν for all ν ̸∈ S.
Assume xν0 = 0 for some ν0. Consider N = ∏ν Nν where Nν = Oν for ν ̸∈ S ∪ {ν0},

Nν is a compact neighborhood of xν in Kν for ν ∈ S with ν ̸= ν0, and Nν0 a very small
neighborhood of 0 ∈ Kν0 . By very small, we mean small enough so that any idele in N
has idelic norm very close to 0 and in particular smaller than 1 (note that we can do this
because any idele in N has idelic norm bounded by product of local norms along places
in S and ν0), so that N is disjoint from I1

K.
Next, assume xν ∈ K×

ν for all ν, since |xν|ν ≤ 1 for all but finitely many ν, the in-
finite product ∥x∥ = ∏ν |x|ν has partial products eventually forming a monotonically
decreasing sequence, and hence this product makes sense as a nonnegative real number.
If ∥x∥ < 1, then let S be a finite set of places containing all archimedean places and such
that xν ∈ Oν for all ν ̸∈ S, and ∏ν∈S |xν|ν < 1. Now, we can apply the same argument
as the preceeding paragraph: we take Nν = Oν for ν ̸∈ S and choose Nν a very small
neighborhood for xν for ν ∈ S. If instead the product P = ∥x∥ > 1. By the convergence
of this product, there is a finite set of places S including all archimedean places, such that
xν ∈ Oν for all v ̸∈ S, and 1

2P > 1
qν

for ν ̸∈ S (so that |ξν|ν < 1 implies |ξν|ν < 1
2P ), and

1 < ∏ν∈S |xν|ν < 2P.
Hence by choosing Nν = Oν for ν ̸∈ S, and choosing Nν very small for ν ∈ S, we have

if ξ ∈ N, and |ξν|ν < 1 for some ν ̸∈ S, then

∥ξ∥ = ∏
ν∈S

|ξν|ν · ∏
ν ̸∈S

|ξν|ν <
2P
2P

= 1

and if |ξν|ν ≥ 1 for all ν ̸∈ S then ∥ξ∥ > 1, so it is also disjoint from I1
K.

Next, we show I1
K ↪→ AK is a homeomorphism onto its closed image. It suffice to show

that every N ⊆ I1
K around a point x contains the intersection of I1

K with a neighborhood
of x in AK. We may assume that x = 1 since multiplication by 1/x is a an automorphism
that carries I1

K onto itself. By the description of the neighborhood basis of 1 ∈ IK, we
can shrink N as N = ∏ν Nν ∩ I1

K with each Nν a small disc centred at 1 in K×
ν for all ν

in a finite set of places S containing all archimedean places, and Nν = O×
ν for all ν ̸∈ S.

By shrinking Nν, we can ensure that ∏ν∈S |ξν|ν < 2 for all ξ ∈ ∏ν Nν ⊆ IK, yet for ξ ∈
∏ν Nν we have ∥ξ∥ = ∏ν∈S |ξν|ν since Nν = O×

ν for ν ̸∈ S. Let W be the neighborhood
∏ν∈S Nν × ∏ν ̸∈S Oν of 1 in AK, then any ξ ∈ W ∩ I1

K satisfies

1 = ∥ξ∥ = ∏
ν∈S

|ξν|ν · ∏
ν ̸∈S

|ξν|ν < 2 ∏
v ̸∈S

|ξν|ν

Since |ξν|ν ≤ 1 for ν ̸∈ S, 1 < 2|ξν0 |ν0 for ν0 ̸∈ S, so 1 ≥ |ξν0 | > 1/2 ≥ 1/qν0 , so
ξν0 ∈ O×

ν0
= Nν0 so W ∩ I1

K ⊆ ∏ν Nν ∩ I1
K = N.
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Theorem 2.8 (Adelic Minkowski’s theorem). For ξ ∈ IK, define the closed subset

Xξ = {(xν) ∈ AK : |xν|ν ≤ |ξν|ν} ⊆ AK

then there eixsts C > 0 such that if ∥ξ∥ > C then Xξ ∩ K has a nonzero element.

Lemma 2.9. The quotient I1
K/K× is compact.

Proof. By Lemma 2.7, the topology on I1
K is induced by AK. Thus for any compact W ⊆

AK, we have W ∩ I1
K is compact. It suffice to find compact W for which the projection

W ∩ I1
K → I1

K/K× is surjective. Choose C > 0 as in Theorem 2.8 and ξ ∈ IK such that
∥ξ∥ > C, define

W = {x ∈ AK : |xν|ν ≤ |ξν|ν}
For any θ ∈ I1

K, the idele θ−1ξ has idelic norm ∥ξ∥ > C. By Theorem 2.8, there exists
nonzero a ∈ K such that |a|ν ≤ |θ−1ξν|ν for all ν, and hence aθ ∈ W. Since a ∈ K× ⊆ I1

K,
so aθ ∈ W ∩ I1

K is a representative of the class of θ in I1
K/K×.

3 Dirichlet Unit Theorem and Class Number

The machinery of adeles has application in proving several finiteness results. Let S be a
set of places that includes all archimedean places, then the S-adele ring AK,S = ∏ν∈S Kν ×
∏ν ̸∈S Oν is an open subring of AK. The S-integers OK,S is the set of a ∈ K such that a is
ν-integral for ν ̸∈ S.

Theorem 3.1. The following are equivalent

1. I1
K/K× is compact

2. Cl(OK,S) is finite and O×
K,S has rank |S| − 1.

Proof. See Conrad [2].
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